×

Spectral clustering based on local linear approximations. (English) Zbl 1271.62132

Summary: In the context of clustering, we assume a generative model where each cluster is the result of sampling points in the neighborhood of an embedded smooth surface; the sample may be contaminated with outliers, which are modeled as points sampled in space away from the clusters. We consider a prototype for a higher-order spectral clustering method based on the residual from a local linear approximation. We obtain theoretical guarantees for this algorithm and show that, in terms of both separation and robustness to outliers, it outperforms the standard spectral clustering algorithm (based on pairwise distances) of A. Y. Ng et al. [“On spectral clustering: analysis and an algorithm”, Adv. Neural Inf. Process Syst. 14, 849–856 (2002)]. The optimal choice for some of the tuning parameters depends on the dimension and thickness of the clusters. We provide estimators that come close enough for our theoretical purposes. We also discuss the cases of clusters of mixed dimensions and of clusters that are generated from smoother surfaces. In our experiments, this algorithm is shown to outperform pairwise spectral clustering on both simulated and real data.

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)
62G20 Asymptotic properties of nonparametric inference
68T10 Pattern recognition, speech recognition

References:

[1] S. Agarwal, K. Branson, and S. Belongie. Higher order learning with graphs. In, Proceedings of the 23rd International Conference on Machine Learning (ICML ’06) , volume 148, pages 17-24, 2006.
[2] S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman, and S. Belongie. Beyond pairwise clustering. In, Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’05) , volume 2, pages 838-845, 2005.
[3] E. Arias-Castro. Clustering based on pairwise distances when the data is of mixed dimensions., IEEE Trans. Inform. Theory , 57(3) :1692-1706, 2011. · Zbl 1366.62117 · doi:10.1109/TIT.2011.2104630
[4] E. Arias-Castro, D. L. Donoho, X. Huo, and C. A. Tovey. Connect the dots: how many random points can a regular curve pass through?, Adv. in Appl. Probab. , 37(3):571-603, 2005. · Zbl 1081.60006 · doi:10.1239/aap/1127483737
[5] E. Arias-Castro, B. Efros, and O. Levi. Networks of polynomial pieces with application to the analysis of point clouds and images., J. Approx. Theory , 162(1):94-130, 2010. · Zbl 1190.42015 · doi:10.1016/j.jat.2009.03.007
[6] R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces., IEEE Trans. Pattern Anal. Mach. Intell. , 25(2):218-233, 2003.
[7] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation., Neural Computation , 15(16) :1373-1396, 2003. · Zbl 1085.68119 · doi:10.1162/089976603321780317
[8] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In, Proceedings of the 23rd International Conference on Machine Learning (ICML ’06) , pages 97-104, 2006.
[9] M. R. Brito, E. L. Chávez, A. J. Quiroz, and J. E. Yukich. Connectivity of the mutual, k -nearest-neighbor graph in clustering and outlier detection. Statist. Probab. Lett. , 35(1):33-42, 1997. · Zbl 0898.62077 · doi:10.1016/S0167-7152(96)00213-1
[10] G. Chen, S. Atev, and G. Lerman. Kernel spectral curvature clustering (KSCC). In, Dynamical Vision Workshop), IEEE 12th International Conference on Computer Vision , pages 765-772, Kyoto, Japan, 2009.
[11] G. Chen and G. Lerman. Foundations of a multi-way spectral clustering framework for hybrid linear modeling., Found. Comput. Math. , 9(5):517-558, 2009. · Zbl 1176.68155 · doi:10.1007/s10208-009-9043-7
[12] G. Chen and G. Lerman. Spectral curvature clustering (SCC)., Int. J. Comput. Vision , 81(3):317-330, 2009.
[13] G. Chen, G. Lerman, and E. Arias-Castro. Higher order spectral clustering (hosc) algorithm. Matlab code. Current version available at, .
[14] F. R. K. Chung., Spectral graph theory , volume 92 of CBMS Regional Conference Series in Mathematics . Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997. · Zbl 0867.05046
[15] J. K. Cullum and R. A. Willoughby., Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. 1: Theory . Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. · Zbl 1013.65033
[16] L. Devroye and G. L. Wise. Detection of abnormal behavior via nonparametric estimation of the support., SIAM J. Appl. Math. , 38(3):480-488, 1980. · Zbl 0479.62028 · doi:10.1137/0138038
[17] D. L. Donoho and C. Grimes. Image manifolds which are isometric to euclidean space., J. Math. Imaging Vis. , 23(1):5-24, 2005. · Zbl 1478.62186 · doi:10.1007/s10851-005-4965-4
[18] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries., J. Approx. Theory , 10:227-236, 1974. · Zbl 0275.41011 · doi:10.1016/0021-9045(74)90120-8
[19] R. Epstein, P. Hallinan, and A. Yuille., 5 \pm 2 eigenimages suffice: An empirical investigation of low-dimensional lighting models. In IEEE Workshop on Physics-based Modeling in Computer Vision , pages 108-116, June 1995. · doi:10.2307/2695549
[20] H. Federer. Curvature measures., Trans. Amer. Math. Soc. , 93:418-491, 1959. · Zbl 0089.38402 · doi:10.2307/1993504
[21] D. J. Field, A. Hayes, and R. F. Hess. Contour integration by the human visual system: Evidence for a local ‘association field’., Vision Research , 33(2):173-193, 1993.
[22] M. Filippone, F. Camastra, F. Masulli, and S. Rovetta. A survey of kernel and spectral methods for clustering., Pattern Recogn. , 41(1):176-190, 2008. · Zbl 1122.68530 · doi:10.1016/j.patcog.2007.05.018
[23] Z. Fu, W. Hu, and T. Tan. Similarity based vehicle trajectory clustering and anomaly detection. In, Proceedings of the IEEE International Conference on Image Processing (ICIP ’05). , volume 2, pages 602-605, 2005.
[24] A. Gionis, A. Hinneburg, S. Papadimitriou, and P. Tsaparas. Dimension induced clustering. In, Proceedings of the eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD ’05) , pages 51-60, New York, NY, USA, 2005.
[25] A. Goldberg, X. Zhu, A. Singh, Z. Xu, and R. Nowak. Multi-manifold semi-supervised learning. In, Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS) , 2009.
[26] G. H. Golub and C. F. Van Loan., Matrix Computations . Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition, 1996.
[27] V. Govindu. A tensor decomposition for geometric grouping and segmentation. In, Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’05) , volume 1, pages 1150-1157, June 2005.
[28] P. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors., Physica D , 9:189-208, 1983. · Zbl 0593.58024 · doi:10.1016/0167-2789(83)90298-1
[29] Q. Guo, H. Li, W. Chen, I.-F. Shen, and J. Parkkinen. Manifold clustering via energy minimization. In, ICMLA ’07: Proceedings of the Sixth International Conference on Machine Learning and Applications , pages 375-380, Washington, DC, USA, 2007. IEEE Computer Society.
[30] G. Haro, G. Randall, and G. Sapiro. Stratification learning: Detecting mixed density and dimensionality in high dimensional point clouds., Advances in Neural Information Processing Systems (NIPS) , 19:553, 2007.
[31] J. Ho, M. Yang, J. Lim, K. Lee, and D. Kriegman. Clustering appearances of objects under varying illumination conditions. In, Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR ’03) , volume 1, pages 11-18, 2003.
[32] D. Kushnir, M. Galun, and A. Brandt. Fast multiscale clustering and manifold identification., Pattern Recogn. , 39(10) :1876-1891, 2006. · Zbl 1096.68720 · doi:10.1016/j.patcog.2006.04.007
[33] E. Levina and P. Bickel. Maximum likelihood estimation of intrinsic dimension. In, Advances in Neural Information Processing Systems (NIPS) , volume 17, pages 777-784. MIT Press, Cambridge, Massachusetts, 2005.
[34] U. Luxburg. A tutorial on spectral clustering., Statistics and Computing , 17(4):395-416, 2007. · doi:10.1007/s11222-007-9033-z
[35] Y. Ma, A. Y. Yang, H. Derksen, and R. Fossum. Estimation of subspace arrangements with applications in modeling and segmenting mixed data., SIAM Review , 50(3):413-458, 2008. · Zbl 1147.52010 · doi:10.1137/060655523
[36] M. Maier, M. Hein, and U. Von Luxburg. Cluster identification in nearest-neighbor graphs. In, Algorithmic Learning Theory , pages 196-210. Springer, 2007. · Zbl 1142.68401 · doi:10.1007/978-3-540-75225-7_18
[37] M. Maier, M. Hein, and U. von Luxburg. Optimal construction of k-nearest-neighbor graphs for identifying noisy clusters., Theor. Comput. Sci. , 410(19) :1749-1764, 2009. · Zbl 1167.68045 · doi:10.1016/j.tcs.2009.01.009
[38] E. Mammen and A. B. Tsybakov. Asymptotical minimax recovery of sets with smooth boundaries., Ann. Statist. , 23(2):502-524, 1995. · Zbl 0834.62038 · doi:10.1214/aos/1176324533
[39] V. Martínez and E. Saar., Statistics of the Galaxy Distribution . Chapman and Hall/CRC press, Boca Raton, 2002.
[40] H. Narayanan, M. Belkin, and P. Niyogi. On the relation between low density separation, spectral clustering and graph cuts. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems (NIPS) , volume 19. MIT Press, Cambridge, MA, 2007.
[41] H. Neumann, A. Yazdanbakhsh, and E. Mingolla. Seeing surfaces: The brain’s vision of the world., Physics of Life Reviews , 4(3):189-222, 2007.
[42] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In, Advances in Neural Information Processing Systems (NIPS) , volume 14, pages 849-856, 2002.
[43] P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high confidence from random samples., Discrete Comput. Geom. , 39(1):419-441, 2008. · Zbl 1148.68048 · doi:10.1007/s00454-008-9053-2
[44] B. Pelletier and P. Pudlo. Operator norm convergence of spectral clustering on level sets., Journal of Machine Learning Research , 12:385-416, 2011. · Zbl 1280.68190
[45] M. Penrose., Random Geometric Graphs , volume 5 of Oxford Studies in Probability . Oxford University Press, Oxford, 2003. · Zbl 1029.60007 · doi:10.1093/acprof:oso/9780198506263.001.0001
[46] S. Rao, A. Yang, S. Sastry, and Y. Ma. Robust algebraic segmentation of mixed rigid-body and planar motions from two views., International Journal of Computer Vision , 88(3):425-446, 2010. · Zbl 1477.68413 · doi:10.1007/s11263-009-0314-1
[47] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding., Science , 290 (5500):2323-2326, 2000.
[48] A. Shashua, R. Zass, and T. Hazan. Multi-way clustering using super-symmetric non-negative tensor factorization. In, Proceedings of the European Conference on Computer Vision (ECCV ’06) , volume 4, pages 595-608, 2006.
[49] R. Souvenir and R. Pless. Manifold clustering. In, IEEE International Conference on Computer Vision (ICCV ’05) , volume 1, pages 648-653, 2005.
[50] M. Talagrand., The Generic Chaining . Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005. · Zbl 1075.60001
[51] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction., Science , 290 (5500):2319-2323, 2000.
[52] R. Valdarnini. Detection of non-random patterns in cosmological gravitational clustering., Astronomy & Astrophysics , 366:376-386, 2001. · Zbl 1068.83023 · doi:10.1051/0004-6361:20010010
[53] R. Vidal and Y. Ma. A unified algebraic approach to 2-D and 3-D motion segmentation and estimation., Journal of Mathematical Imaging and Vision , 25(3):403-421, 2006. · Zbl 1478.68411 · doi:10.1007/s10851-006-8286-z
[54] U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering., Ann. Statist. , 36(2):555-586, 2008. · Zbl 1133.62045 · doi:10.1214/009053607000000640
[55] H. Weyl. On the volume of tubes., Amer. J. Math. , 61(2):461-472, 1939. · Zbl 0021.35503 · doi:10.2307/2371513
[56] L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In, Advances in Neural Information Processing Systems (NIPS) , volume 17, pages 1601-1608, 2004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.