×

Iterative application of dimension reduction methods. (English) Zbl 1271.62143

Summary: The goal of this article is to introduce an iterative application of dimension reduction methods. It is known that in some situations, methods such as sliced inverse regression (SIR), ordinary least squares (OLS) and cumulative mean estimation (CUME) are able to find only a partial basis for the dimension reduction subspace. However, for many models these methods are very good estimators of this partial basis. In this paper we propose a simple iterative procedure which differs from existing combined approaches in the sense that the initial partial basis is estimated first and the second dimension reduction approach seeks only the remainder of the dimension reduction subspace. Our approach is compared against that of existing combined dimension reduction approaches via simulated data as well as two example data sets.

MSC:

62J02 General nonlinear regression
62H30 Classification and discrimination; cluster analysis (statistical aspects)

Software:

e1071
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Bentler, P. M., & Xie, J. 2000. Corrections to test statistics in principal hessian directions., Statist. Probab. Lett. , 47 , 381-389. · Zbl 1157.62412
[2] Brillinger, D. R. 1977. The identification of a particular nonlinear time series system., Biometrika , 64 , 509-515. · Zbl 0388.62084 · doi:10.1093/biomet/64.3.509
[3] Bura, E., & Cook, R.D. 2001. Extending sliced inverse regression., J. Amer. Statist. Assoc. , 96 , 996-1003. · Zbl 1047.62035 · doi:10.1198/016214501753208979
[4] Castlehouse, H. 2008., The biogeochemical controls on arsenic mobilisation in a geogenic arsenic rich soil . PhD dissertation, University of Sheffield.
[5] Cook, R. D. 1998a. Principal Hessian directions revisited., J. Amer. Statist. Assoc. , 93 , 84-100. With comments by Ker-Chau Li and a rejoinder by the author. · Zbl 0922.62057 · doi:10.2307/2669605
[6] Cook, R. D. 1998b., Regression graphics . New York: John Wiley & Sons Inc. Ideas for studying regressions through graphics. · Zbl 0903.62001
[7] Cook, R. D., & Li, B. 2002. Dimension reduction for conditional mean in regression., Ann. Statist. , 30 , 455-474. · Zbl 1012.62035 · doi:10.1214/aos/1021379861
[8] Cook, R.D., & Weisberg, S. 1991. Sliced inverse regression for dimension reduction: Comment., J. Amer. Statist. Assoc. , 86 , 328-332. · Zbl 0742.62044 · doi:10.2307/2290563
[9] Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., & Weingessel, A. 2010., e1071: Misc functions of the department of statistics (e1071), tu wien . R package version 1.5-24.
[10] Ferre, L. 1998. Determining the dimension in sliced inverse regression and related methods., J. Amer. Statist. Assoc. , 93 , 132-140. · Zbl 0908.62049 · doi:10.2307/2669610
[11] Hall, P., & Li, K.-C. 1993. On almost linearity of low-dimensional projections from high-dimensional data., Ann. Statist. , 21 , 867-889. · Zbl 0782.62065 · doi:10.1214/aos/1176349155
[12] Karatzoglou, A., Meyer, D., & Kurt, H. 2005. Support vector machines in R. Department of Statistics and Mathematics, Wirtschaftsuniversität Wien: ePub, .
[13] Kohavi, R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection., Pages 1137-1145 of: IJCAI .
[14] Li, B., & Wang, S. L. 2007. On directional regression for dimension reduction., J. Amer. Statist. Assoc. , 102 , 997-1008. · Zbl 1469.62300 · doi:10.1198/016214507000000536
[15] Li, B., Zha, H. Y., & Chiaromonte, F. 2005. Contour regression: a general approach to dimension reduction., Ann. Statist. , 33 , 1580-1616. · Zbl 1078.62033 · doi:10.1214/009053605000000192
[16] Li, K.-C. 1991a. Sliced inverse regression for dimension reduction (with discussion)., J. Amer. Statist. Assoc. , 86 , 316-342. · Zbl 0742.62044 · doi:10.2307/2290563
[17] Li, K.-C. 1991b. Rejoinder for discussions on sliced inverse regression for dimension reduction (with discussion)., J. Amer. Statist. Assoc. , 86 , 337-342. · Zbl 0742.62044 · doi:10.2307/2290563
[18] Li, K.-C. 1992. On principal hessian directions for data visualization and dimension reduction: Another application of Stein’s lemma., J. Amer. Statist. Assoc. , 87 , 1025-1039. · Zbl 0765.62003 · doi:10.2307/2290640
[19] Li, K.-C., & Duan, N. 1989. Regression analysis under link violation., Ann. Statist. , 17 , 1009-1052. · Zbl 0753.62041 · doi:10.1214/aos/1176347254
[20] Lue, H.-H., Chen, C.-H, & Chang, W.-H. 2011. Dimension reduction in survival regressions with censored data via an imputed spline approach., Biometrical journal , 53 , 426-443. · Zbl 1213.62156 · doi:10.1002/bimj.201000168
[21] Prendergast, L. A. 2005. Influence functions for sliced inverse regression., Scand. J. Statist. , 32 , 385-404. · Zbl 1088.62054 · doi:10.1111/j.1467-9469.2005.00447.x
[22] Prendergast, L. A., & Smith, J. A. 2010. Influence functions for dimension reduction methods: An example influence study of principal hessian direction analysis., Scand. J. Statist. , 37 , 588-611. · Zbl 1226.62064 · doi:10.1111/j.1467-9469.2009.00666.x
[23] Sheather, S.J., McKean, J.W., & Crimin, K. 2008. Sliced mean variance-covariance inverse regression., Comput. Statist. Data Anal. , 52 , 1908-1927. · Zbl 1452.62466
[24] Stein, C. M. 1981. Estimation of the mean of a multivariate normal distribution., Ann. Statist. , 9 , 1135-1151. · Zbl 0476.62035 · doi:10.1214/aos/1176345632
[25] Ye, Z., & Weiss, R.E. 2003. Using the bootstrap to select one of a new class of dimension reduction methods., J. Amer. Statist. Assoc. , 98 , 968-979. · Zbl 1045.62034 · doi:10.1198/016214503000000927
[26] Zhu, L. P., Zhu, L. X., & Feng, Z. H. 2010a. Dimension reduction in regressions through cumulative slicing estimation., J. Amer. Statist. Assoc. , 105 , 1455-1466. · Zbl 1388.62121 · doi:10.1198/jasa.2010.tm09666
[27] Zhu, L. P., Wang, T., Zhu, L. X., & Ferre, L. 2010b. Sufficient dimension reduction through discretization-expectation estimation., Biometrika , 97 , 295-304. · Zbl 1205.62048 · doi:10.1093/biomet/asq018
[28] Zhu, L. X., Ohtaki, M., & Li, Y. 2007. On hybrid methods of inverse regression-based algorithms., Comput. Statist. Data Anal. , 51 , 2621-2635. · Zbl 1161.62332
[29] Zhu, M., & Hastie, T.J. 2003. Feature extraction for nonparametric discriminant analysis., J. Comput. Graph. Statist. , 12 , 101-120. · doi:10.1198/1061860031220
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.