Free vibration analysis of elastically supported functionally graded annular plates subjected to thermal environment. (English) Zbl 1271.74170

Summary: Free vibration analysis of functionally graded (FG) thin-to-moderately thick annular plates subjected to thermal environment and supported on two-parameter elastic foundation is investigated. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The equations of motion and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the Hamilton’s principle based on the first order shear deformation theory (FSDT). The initial thermal stresses are obtained by solving the thermoelastic equilibrium equations. Differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to solve the thermoelastic equilibrium equations and the equations of motion. The formulations are validated by comparing the results in the limit cases with the available solutions in the literature for isotropic and FG circular and annular plates. The effects of the temperature rise, elastic foundation coefficients, the material graded index and different geometrical parameters on the frequency parameters of the FG annular plates are investigated. The new results can be used as benchmark solutions for future researches.


74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
Full Text: DOI


[1] Aydogdu M, Taskin V (2007) Free vibration analysis of functionally graded beams with simply supported edges. Mater Des 28:1651-1656 · doi:10.1016/j.matdes.2006.02.007
[2] Fazelzadeh SA, Malekzadeh P, Zahedinejad P, Hosseini M (2007) Vibration analysis of functionally graded thin-walled rotating blades under high temperature supersonic flow using the differential quadrature method. J Sound Vib 306:333-348 · doi:10.1016/j.jsv.2007.05.011
[3] Xiang HJ, Yang J (2008) Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. J Compos, Part B 39:292-303 · doi:10.1016/j.compositesb.2007.01.005
[4] Pradhan SC, Murmu T (2008) Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method. J Sound Vib 282:509-516
[5] Piovan MT, Sampaio R (2008) Vibration of axially moving flexible beams made of functionally graded materials. Thin-Walled Struct 46:112-121 · doi:10.1016/j.tws.2007.08.031
[6] Chen CS, Chen TJ, Chien RD (2006) Nonlinear vibration of initially stressed functionally graded plates. Thin-Walled Struct 44:844-851 · doi:10.1016/j.tws.2006.08.007
[7] Batra RC, Jin J (2005) Natural frequencies of a functionally graded anisotropic rectangular plate. J Sound Vib 282:509-516 · doi:10.1016/j.jsv.2004.03.068
[8] Yang J, Shen HS (2002) Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environment. J Sound Vib 255:579-602 · doi:10.1006/jsvi.2001.4161
[9] Qian LF, Batra RC, Chen LM (2004) Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method. Compos, Part B 35:685-697 · doi:10.1016/j.compositesb.2004.02.004
[10] Batra RC (2007) Higher-order shear and normal deformable theory for functionally graded incompressible linear elastic plates. Thin-Walled Struct 45:974-982 · doi:10.1016/j.tws.2007.07.008
[11] Kim YW (2005) Temperature dependent vibration analysis of functionally graded rectangular plates. J Sound Vib 284:531-549 · doi:10.1016/j.jsv.2004.06.043
[12] Malekzadeh P (2009) Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations. Compos Struct 90:428-437 · doi:10.1016/j.compstruct.2009.04.015
[13] Gupta AK, Kumar L (2008) Thermal effect on vibration of non-homogeneous visco-elastic rectangular plate of linearly varying thickness. Meccanica 43:47-54 · Zbl 1163.74506 · doi:10.1007/s11012-007-9093-3
[14] Gupta AK, Kaur H (2008) Study of the effect of thermal gradient on free vibration of clamped visco-elastic rectangular plate with linearly thickness variation in both directions. Meccanica 43:449-458 · Zbl 1163.74505 · doi:10.1007/s11012-008-9110-1
[15] Eraslan AN, Akis T (2006) On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems. Acta Mech 181:43-63 · Zbl 1103.74032 · doi:10.1007/s00707-005-0276-5
[16] Prakash T, Ganapathi M (2006) Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method. Compos, Part B 37:642-649 · doi:10.1016/j.compositesb.2006.03.005
[17] Efraim E, Eisenberger M (2007) Exact vibration analysis of variable thickness thick annular isotropic and FGM plates. J Sound Vib 299:720-738 · doi:10.1016/j.jsv.2006.06.068
[18] Nie GJ, Zhong Z (2007) Semi-analytical solution for three-dimensional vibration of functionally graded circular plates. Comput Methods Appl Mech Eng 196:4901-4910 · Zbl 1173.74339 · doi:10.1016/j.cma.2007.06.028
[19] Chakraverty S, Jindal R, Agarwal VK (2007) Effect of non-homogeneity on natural frequencies of vibration of elliptic plates. Meccanica 42:585-599 · Zbl 1163.74501 · doi:10.1007/s11012-007-9077-3
[20] Dong CY (2008) Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev-Ritz method. Mater Des 29:1518-1525 · doi:10.1016/j.matdes.2008.03.001
[21] Gupta AK, Kumar L (2009) Effect of thermal gradient on vibration of non-homogeneous visco-elastic elliptic plate of variable thickness. Meccanica 44:507-518 · Zbl 1258.74100 · doi:10.1007/s11012-008-9184-9
[22] Malekzadeh P, Shahpari SA, Ziaee HR (2010) Three-dimensional free vibration of thick functionally graded annular plates in thermal environment. J Sound Vib 329:425-442 · doi:10.1016/j.jsv.2009.09.025
[23] Zhou D, Lo SH, Au FTK, Cheung YK (2006) Three-dimensional free vibration of thick circular plates on Pasternak foundation. J Sound Vib 292:726-741 · doi:10.1016/j.jsv.2005.08.028
[24] Hosseini Hashemi SH, Rokni Damavandi Taher H, Omidi M (2008) 3-D free vibration analysis of annular plates on Pasternak elastic foundation via p-Ritz method. J Sound Vib 311:1114-1140 · doi:10.1016/j.jsv.2007.10.020
[25] Ying J, Lü CF, Chen WQ (2008) Two-dimensional elasticity solutions for functionally graded beams on elastic foundations. Compos Struct 84:209-219 · doi:10.1016/j.compstruct.2007.07.004
[26] Pradhan SC, Murmu T (2009) Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method. J Sound Vib 321:342-362 · doi:10.1016/j.jsv.2008.09.018
[27] Huang ZY, Lü CF, Chen WQ (2008) Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations. Compos Struct 85:95-104 · doi:10.1016/j.compstruct.2007.10.010
[28] Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review. Appl Mech Rev 49:1-27 · doi:10.1115/1.3101882
[29] Malekzadeh P (2008) Differential quadrature large amplitude free vibration analysis of laminated skew plates based on FSDT. Compos Struct 83:189-200 · doi:10.1016/j.compstruct.2007.04.007
[30] Malekzadeh P, Setoodeh AR, Barmshouri E (2008) A hybrid layerwise and differential quadrature method for in-plane free vibration of laminated thick circular arches. J Sound Vib 315:215-225 · doi:10.1016/j.jsv.2008.02.005
[31] Malekzadeh P (2008) Nonlinear free vibration of tapered Mindlin plates with edges elastically restrained against rotation using DQM. Thin-Walled Struct 46:11-26 · doi:10.1016/j.tws.2007.08.016
[32] Tornabene F, Viola E (2009) Free vibration analysis of functionally graded panels and shells of revolution. Meccanica 44:255-281 · Zbl 1254.74056 · doi:10.1007/s11012-008-9167-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.