zbMATH — the first resource for mathematics

Double affine Hecke algebra in logarithmic conformal field theory. (English. Russian original) Zbl 1271.81155
Funct. Anal. Appl. 44, No. 1, 55-64 (2010); translation from Funkts. Anal. Prilozh. 44, No. 1, 68-79 (2010).
Summary: We construct a representation of the double affine Hecke algebra. The symmetrization of this representation coincides with the center of the quantum group \(\overline{\mathcal U}_{\mathfrak q}s\ell(2)\) and, by Kazhdan-Lusztig duality with the Verlinde algebra of the \((1,p)\)-model of the logarithmic conformal field theory.

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
20C08 Hecke algebras and their representations
17B37 Quantum groups (quantized enveloping algebras) and related deformations
Full Text: DOI
[1] V. Gurarie, ”Logarithmic operators in conformal field theory,” Nuclear Phys. B, 410:3 (1993), 535–549; http://arxiv.org/abs/hep-th/9303160 . · Zbl 0990.81686 · doi:10.1016/0550-3213(93)90528-W
[2] A. M. Semikhatov, ”Factorizable ribbon quantum groups in logarithmic conformal field theories,” Teoret. Mat. Fiz., 154:3 (2008), 510–535; English transl.: Theoret. Math. Phys., 154:3 (2008), 433-453; http://arxiv.org/abs/0705.4267 . · Zbl 1166.81024 · doi:10.4213/tmf6184
[3] M. R. Gaberdiel and H. G. Kausch, ”A rational logarithmic conformal field theory,” Phys. Lett. B, 386:1–4 (1996), 131–137; http://arxiv.org/abs/hep-th/9606050 . · Zbl 0948.81632 · doi:10.1016/0370-2693(96)00949-5
[4] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Yu. Tipunin, Kazhdan–Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT, http://arxiv.org/abs/math/0512621 . · Zbl 1177.17012
[5] D. Kazhdan and G. Lusztig, ”Tensor structures arising from affine Lie algebras,” I, J. Amer. Math. Soc., 6:4 (1993), 905–947; II, J. Amer. Math. Soc., 6:4 (1993), 949–1011; III, J. Amer. Math. Soc., 7:2 (1994), 335–381; IV, J. Amer. Math. Soc., 7:2 (1994), 383-453. · Zbl 0786.17017 · doi:10.1090/S0894-0347-1993-99999-X
[6] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Yu. Tipunin, ”Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center,” Comm. Math. Phys., 265:1 (2006), 47–93; http://arxiv.org/abs/hep-th/0504093 . · Zbl 1107.81044 · doi:10.1007/s00220-006-1551-6
[7] M. R. Gaberdiel and H. G. Kausch, ”Indecomposable fusion products,” Nucl. Phys. B, 477:1 (1996), 293–318; http://arxiv.org/abs/hep-th/9604026 . · doi:10.1016/0550-3213(96)00364-1
[8] J. Fuchs, S. Hwang, A. M. Semikhatov, and I. Yu. Tipunin, ”Nonsemisimple fusion algebras and the Verlinde formula,” Comm. Math. Phys., 247:3 (2004), 713–742; http://arxiv.org/abs/hep-th/0306274 . · Zbl 1063.81062 · doi:10.1007/s00220-004-1058-y
[9] M. Flohr and H. Knuth, On Verlinde-like formulas in c p,1 logarithmic conformal field theories, http://arxiv.org/abs/0705.0545 .
[10] M. Flohr, ”Bits and pieces in logarithmic conformal field theory,” Internat. J. Modern Phys. A, 18:25 (2003), 4497–4592; http://arxiv.org/abs/hep-th/0111228 . · Zbl 1039.81501 · doi:10.1142/S0217751X03016859
[11] I. Cherednik, Double Affine Hecke Algebras, Cambridge Univ. Press, Cambridge, 2005. · Zbl 1087.20003
[12] I. Cherednik, Private communication, Kyoto, 2004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.