×

Synchronization in array of coupled neural networks with unbounded distributed delay and limited transmission efficiency. (English) Zbl 1271.92007

Summary: This paper investigates global synchronization in an array of coupled neural networks with time-varying delays and unbounded distributed delays. In the coupled neural networks, limited transmission efficiency between coupled nodes, which makes the model more practical, is considered. Based on a novel integral inequality and the Lyapunov functional method, sufficient synchronization criteria are derived. The derived synchronization criteria are formulated by linear matrix inequalities (LMIs) and can be easily verified by using Matlab LMI Toolbox. It is displayed that, when some of the transmission efficiencies are limited, the dynamics of the synchronized state are different from those of the isolated node. Furthermore, the transmission efficiency and inner coupling matrices between nodes play important roles in the final synchronized state. The derivative of the time-varying delay can be any given value, and the time-varying delay can be unbounded. The outer-coupling matrices can be symmetric or asymmetric. Numerical simulations are finally given to demonstrate the effectiveness of the theoretical results.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
92B25 Biological rhythms and synchronization
93C42 Fuzzy control/observation systems
15A45 Miscellaneous inequalities involving matrices
92-08 Computational methods for problems pertaining to biology

Software:

LMI toolbox; Matlab

References:

[1] Strogatz, S. H.; Stewart, I., Coupled oscillators and biological synchronization, Scientific American, 269, 6, 102-109 (1993)
[2] Zhou, P.; Ding, R., Modified function projective synchronization between different dimension fractional-order chaotic systems, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.34019
[3] Yang, X.; Cao, J., Finite-time stochastic synchronization of complex networks, Applied Mathematical Modelling, 34, 11, 3631-3641 (2010) · Zbl 1201.37118 · doi:10.1016/j.apm.2010.03.012
[4] Liang, J.; Wang, Z.; Liu, Y.; Liu, X., Global synchronization control of general delayed discrete-time networks with stochastic coupling and disturbances, IEEE Transactions on Systems, Man, and Cybernetics B, 38, 4, 1073-1083 (2008) · doi:10.1109/TSMCB.2008.925724
[5] Yang, X.; Zhu, Q.; Huang, C., Lag stochastic synchronization of chaotic mixed time-delayed neural networks with uncertain parameters or perturbations, Neurocomputing, 74, 10, 1617-1625 (2011) · doi:10.1016/j.neucom.2011.01.010
[6] Cao, J.; Lu, J., Adaptive synchronization of neural networks with or without time-varying delay, Chaos, 16, 1 (2006) · Zbl 1144.37331 · doi:10.1063/1.2178448
[7] Yang, X.; Cao, J.; Long, Y.; Rui, W., Adaptive lag synchronization for competitive neural networks with mixed delays and uncertain hybrid perturbations, IEEE Transactions on Neural Networks, 21, 10, 1656-1667 (2010) · doi:10.1109/TNN.2010.2068560
[8] Yang, X.; Cao, J., Stochastic synchronization of coupled neural networks with intermittent control, Physics Letters A, 373, 36, 3259-3272 (2009) · Zbl 1233.34020 · doi:10.1016/j.physleta.2009.07.013
[9] Yu, W.; Cao, J., Synchronization control of stochastic delayed neural networks, Physica A, 373, 252-260 (2007) · doi:10.1016/j.physa.2006.04.105
[10] Gao, X.; Zhong, S.; Gao, F., Exponential synchronization of neural networks with time-varying delays, Nonlinear Analysis: Theory, Methods & Applications, 71, 5-6, 2003-2011 (2009) · Zbl 1173.34349 · doi:10.1016/j.na.2009.01.243
[11] Li, T.; Song, A.; Fei, S.; Guo, Y., Synchronization control of chaotic neural networks with time-varying and distributed delays, Nonlinear Analysis: Theory, Methods & Applications, 71, 5-6, 2372-2384 (2009) · Zbl 1171.34049 · doi:10.1016/j.na.2009.01.079
[12] Lu, J.; Ho, D. W. C.; Wang, Z., Pinning stabilization of linearly coupled stochastic neural networks via minimum number of controllers, IEEE Transactions on Neural Networks, 20, 10, 1617-1629 (2009) · doi:10.1109/TNN.2009.2027810
[13] Yang, X.; Huang, C.; Yang, Z., Stochastic synchronization of reaction-diffusion neural networks under general impulsive controller with mixed delays, Abstract and Applied Analysis, 2012 (2012) · Zbl 1256.34064 · doi:10.1155/2012/603535
[14] Lu, J.; Ho, D. W. C., Globally exponential synchronization and synchronizability for general dynamical networks, IEEE Transactions on Systems, Man, and Cybernetics B, 40, 2, 350-361 (2010) · doi:10.1109/TSMCB.2009.2023509
[15] Lu, J.; Ho, D. W. C.; Cao, J., A unified synchronization criterion for impulsive dynamical networks, Automatica, 46, 7, 1215-1221 (2010) · Zbl 1194.93090 · doi:10.1016/j.automatica.2010.04.005
[16] He, W.; Cao, J., Global synchronization in arrays of coupled networks with one single time-varying delay coupling, Physics Letters A, 373, 31, 2682-2694 (2009) · Zbl 1231.34050 · doi:10.1016/j.physleta.2009.05.041
[17] Cao, J.; Wang, Z.; Sun, Y., Synchronization in an array of linearly stochastically coupled networks with time delays, Physica A, 385, 2, 718-728 (2007) · doi:10.1016/j.physa.2007.06.043
[18] Yu, W.; Cao, J.; Chen, G.; Lü, J.; Han, J.; Wei, W., Local synchronization of a complex network model, IEEE Transactions on Systems, Man, and Cybernetics B, 39, 1, 230-241 (2009) · doi:10.1109/TSMCB.2008.2004964
[19] Cao, J.; Li, L., Cluster synchronization in an array of hybrid coupled neural networks with delay, Neural Networks, 22, 4, 335-342 (2009) · Zbl 1338.93284 · doi:10.1016/j.neunet.2009.03.006
[20] Song, Q., Synchronization analysis of coupled connected neural networks with mixed time delays, Neurocomputing, 72, 16-18, 3907-3914 (2009) · doi:10.1016/j.neucom.2009.04.009
[21] Shen, B.; Wang, Z.; Liu, X., Bounded \(H_∞\) synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon, IEEE Transactions on Neural Networks, 22, 1, 145-157 (2011) · doi:10.1109/TNN.2010.2090669
[22] Gao, H. J.; Lam, J.; Chen, G., New criteria for synchronization stability of general complex dynamical networks with coupling delays, Physics Letters A, 360, 2, 263-273 (2006) · Zbl 1236.34069 · doi:10.1016/j.physleta.2006.08.033
[23] Tang, Y.; Qiu, R.; Fang, J.; Miao, Q.; Xia, M., Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays, Physics Letters A, 372, 24, 4425-4433 (2008) · Zbl 1221.82078 · doi:10.1016/j.physleta.2008.04.032
[24] Liu, Y.; Wang, Z.; Liu, X., Exponential synchronization of complex networks with Markovian jump and mixed delays, Physics Letters A, 372, 22, 3986-3998 (2008) · Zbl 1220.90040 · doi:10.1016/j.physleta.2008.02.085
[25] Li, T.; Fei, S. M.; Zhang, K. J., Synchronization control of recurrent neural networks with distributed delays, Physica A, 387, 4, 982-996 (2008) · doi:10.1016/j.physa.2007.10.010
[26] Gopalsamy, K.; He, X. Z., Stability in asymmetric Hopfield nets with transmission delays, Physica D, 76, 4, 344-358 (1994) · Zbl 0815.92001 · doi:10.1016/0167-2789(94)90043-4
[27] Huang, C.; Cao, J., Almost sure exponential stability of stochastic cellular neural networks with unbounded distributed delays, Neurocomputing, 72, 13-15, 3352-3356 (2009) · doi:10.1016/j.neucom.2008.12.030
[28] Sheng, L.; Yang, H., Exponential synchronization of a class of neural networks with mixed time-varying delays and impulsive effects, Neurocomputing, 71, 16-18, 3666-3674 (2008) · doi:10.1016/j.neucom.2008.03.004
[29] Nie, X.; Cao, J., Multistability of competitive neural networks with time-varying and distributed delays, Nonlinear Analysis: Real World Applications, 10, 2, 928-942 (2009) · Zbl 1167.34383 · doi:10.1016/j.nonrwa.2007.11.014
[30] Yang, X., Existence and global exponential stability of periodic solution for Cohen-Grossberg shunting inhibitory cellular neural networks with delays and impulses, Neurocomputing, 72, 10-12, 2219-2226 (2009) · doi:10.1016/j.neucom.2009.01.003
[31] Wang, Z.; Liu, Y.; Li, M.; Liu, X., Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Transactions on Neural Networks, 17, 3, 814-820 (2006) · doi:10.1038/sj.bjp.0706784
[32] Horn, R. A.; Johnson, C. R., Matrix Analysis (1990), Cambridge University Press · Zbl 0704.15002
[33] Guan, Z. H.; Liu, Z. W.; Feng, G.; Wang, Y. W., Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE Transactions on Circuits and Systems I, 57, 8, 2182-2195 (2010) · Zbl 1468.93086 · doi:10.1109/TCSI.2009.2037848
[34] Wang, Y.; Xie, L.; de Souza, C. E., Robust control of a class of uncertain nonlinear systems, Systems & Control Letters, 19, 2, 139-149 (1992) · Zbl 0765.93015 · doi:10.1016/0167-6911(92)90097-C
[35] Yang, X.; Cao, J.; Lu, J., Synchronization of coupled neural networks with random coupling strengths and mixed probabilistic time-varying delays, International Journal of Robust and Nonlinear Control (2012) · Zbl 1278.93021 · doi:10.1002/rnc.2868
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.