×

Global \(\mu\)-stability analysis for impulsive stochastic neural networks with unbounded mixed delays. (English) Zbl 1271.93170

Summary: We investigate the global \(\mu\)-stability in the mean square of impulsive stochastic neural networks with unbounded time-varying delays and continuous distributed delays. By choosing an appropriate Lyapunov-Krasovskii functional, a novel robust stability condition, in the form of linear matrix inequalities, is derived. These sufficient conditions can be tested by MATLAB LMI software packages. The results extend and improve the earlier publication. Two numerical examples are provided to illustrate the effectiveness of the obtained theoretical results.

MSC:

93E15 Stochastic stability in control theory
93D09 Robust stability
92B20 Neural networks for/in biological studies, artificial life and related topics
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

Software:

Matlab; LMI toolbox
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hopfield, J. J.; Tank, D. W., ‘Neural’ computation of decisions in optimization problems, Biological Cybernetics, 52, 3, 141-152 (1985) · Zbl 0572.68041
[2] Hopfield, J. J.; Tank, D. W., Computing with neural circuits: a model, Science, 233, 4764, 625-633 (1986) · doi:10.1126/science.3755256
[3] Wang, Z.; Liu, Y.; Fraser, K.; Liu, X., Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays, Physics Letters A, 354, 4, 288-297 (2006) · Zbl 1181.93068 · doi:10.1016/j.physleta.2006.01.061
[4] Blythe, S.; Mao, X.; Liao, X., Stability of stochastic delay neural networks, Journal of the Franklin Institute, 338, 4, 481-495 (2001) · Zbl 0991.93120 · doi:10.1016/S0016-0032(01)00016-3
[5] Huang, C.; He, Y.; Wang, H., Mean square exponential stability of stochastic recurrent neural networks with time-varying delays, Computers & Mathematics with Applications, 56, 7, 1773-1778 (2008) · Zbl 1152.60346 · doi:10.1016/j.camwa.2008.04.004
[6] Wang, Z.; Liu, Y.; Li, M.; Liu, X., Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Transactions on Neural Networks, 17, 3, 814-820 (2006) · doi:10.1038/sj.bjp.0706784
[7] Su, W.; Chen, Y., Global robust stability criteria of stochastic Cohen-Grossberg neural networks with discrete and distributed time-varying delays, Communications in Nonlinear Science and Numerical Simulation, 14, 2, 520-528 (2009) · Zbl 1221.37196 · doi:10.1016/j.cnsns.2007.09.001
[8] Wan, L.; Zhou, Q., Exponential stability of stochastic reaction-diffusion Cohen-Grossberg neural networks with delays, Applied Mathematics and Computation, 206, 2, 818-824 (2008) · Zbl 1255.60109 · doi:10.1016/j.amc.2008.10.002
[9] Mohamad, S.; Gopalsamy, K.; Akça, H., Exponential stability of artificial neural networks with distributed delays and large impulses, Nonlinear Analysis: Real World Applications, 9, 3, 872-888 (2008) · Zbl 1154.34042 · doi:10.1016/j.nonrwa.2007.01.011
[10] Zhou, J.; Xiang, L.; Liu, Z., Synchronization in complex delayed dynamical networks with impulsive effects, Physica A, 384, 2, 684-692 (2007) · doi:10.1016/j.physa.2007.05.060
[11] Gu, H.; Jiang, H.; Teng, Z., Existence and globally exponential stability of periodic solution of BAM neural networks with impulses and recent-history distributed delays, Neurocomputing, 71, 4-6, 813-822 (2008) · doi:10.1016/j.neucom.2007.03.007
[12] Zhang, H.; Dong, M.; Wang, Y.; Sun, N., Stochastic stability analysis of neutral-type impulsive neural networks with mixed time-varying delays and Markovian jumping, Neurocomputing, 73, 13-15, 2689-2695 (2010) · doi:10.1016/j.neucom.2010.04.016
[13] Chen, L.; Wu, R.; Pan, D., Mean square exponential stability of impulsive stochastic fuzzy cellular neural networks with distributed delays, Expert Systems with Applications, 38, 5, 6294-6299 (2011) · doi:10.1016/j.eswa.2010.11.070
[14] Rakkiyappan, R.; Balasubramaniam, P.; Lakshmanan, S., Robust stability results for uncertain stochastic neural networks with discrete interval and distributed time-varying delays, Physics Letters A, 372, 32, 5290-5298 (2008) · Zbl 1223.92001 · doi:10.1016/j.physleta.2008.06.011
[15] Zhou, W.; Li, M., Mixed time-delays dependent exponential stability for uncertain stochastic high-order neural networks, Applied Mathematics and Computation, 215, 2, 503-513 (2009) · Zbl 1206.65025 · doi:10.1016/j.amc.2009.05.025
[16] Li, H.; Wang, C.; Shi, P.; Gao, H., New passivity results for uncertain discrete-time stochastic neural networks with mixed time delays, Neurocomputing, 73, 16-18, 3291-3299 (2010) · doi:10.1016/j.neucom.2010.04.019
[17] Kwon, O. M.; Lee, S. M.; Park, J. H., Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays, Physics Letters A, 374, 10, 1232-1241 (2010) · Zbl 1236.92006 · doi:10.1016/j.physleta.2010.01.007
[18] Wang, Z.; Liu, Y.; Liu, X.; Shi, Y., Robust state estimation for discrete-time stochastic neural networks with probabilistic measurement delays, Neurocomputing, 74, 1-3, 256-264 (2010) · doi:10.1016/j.neucom.2010.03.013
[19] Li, C.; Shi, J.; Sun, J., Stability of impulsive stochastic differential delay systems and its application to impulsive stochastic neural networks, Nonlinear Analysis, Theory, Methods and Applications, 74, 10, 3099-3111 (2011) · Zbl 1218.34097 · doi:10.1016/j.na.2011.01.026
[20] Balasubramaniam, P.; Ali, M. S., Robust exponential stability of uncertain fuzzy Cohen-Grossberg neural networks with time-varying delays, Fuzzy Sets and Systems, 161, 4, 608-618 (2010) · Zbl 1185.68511 · doi:10.1016/j.fss.2009.10.013
[21] Liao, X.; Li, C., An LMI approach to asymptotical stability of multi-delayed neural networks, Physica D, 200, 1-2, 139-155 (2005) · Zbl 1078.34052 · doi:10.1016/j.physd.2004.10.009
[22] Lou, X. Y.; Cui, B., New LMI conditions for delay-dependent asymptotic stability of delayed Hopfield neural networks, Neurocomputing, 69, 16-18, 2374-2378 (2006) · doi:10.1016/j.neucom.2006.02.019
[23] Zhang, Q.; Xu, X. W. J., Delay-dependent global stability results for delayed Hopfield neural networks, Chaos, Solitons and Fractals, 34, 2, 662-668 (2007) · Zbl 1146.34332 · doi:10.1016/j.chaos.2006.03.073
[24] Raja, R.; Sakthivel, R.; Anthoni, S. M., Stability analysis for discrete-time stochastic neural networks with mixed time delays and impulsive effects, Canadian Journal of Physics, 88, 12, 885-898 (2010) · doi:10.1139/P10-086
[25] Sakthivel, R.; Samidurai, R.; Anthoni, S. M., New exponential stability criteria for stochastic BAM neural networks with impulses, Physica Scripta, 82, 4 (2010) · Zbl 1202.93101 · doi:10.1088/0031-8949/82/04/045802
[26] Sakthivel, R.; Samidurai, R.; Anthoni, S. M., Asymptotic stability of stochastic delayed recurrent neural networks with impulsive effects, Journal of Optimization Theory and Applications, 147, 3, 583-596 (2010) · Zbl 1211.93108 · doi:10.1007/s10957-010-9728-8
[27] Niculescu, S.-I., Delay Effects on Stability: A Robust Control Approach. Delay Effects on Stability: A Robust Control Approach, Lecture Notes in Control and Information Sciences, 269, xvi+383 (2001), London, UK: Springer, London, UK · Zbl 0997.93001
[28] Kolmanovskiĭ, V. B.; Nosov, V. R., Stability of Functional-Differential Equations. Stability of Functional-Differential Equations, Mathematics in Science and Engineering, 180, xiv+217 (1986), London, UK: Academic Press, London, UK · Zbl 0593.34070
[29] Chen, T.; Wang, L., Global \(μ\)-stability of delayed neural networks with unbounded time-varying delays, IEEE Transactions on Neural Networks, 18, 6, 1836-1840 (2007) · doi:10.1109/TNN.2007.902716
[30] Liu, X.; Chen, T., Robust \(μ\)-stability for uncertain stochastic neural networks with unbounded time-varying delays, Physica A, 387, 12, 2952-2962 (2008) · doi:10.1016/j.physa.2008.01.068
[31] Cao, J.; Yuan, K.; Li, H. X., Global asymptotical stability of recurrent neural networks with multiple discrete delays and distributed delays, IEEE Transactions on Neural Networks, 17, 6, 1646-1651 (2006) · doi:10.1109/TNN.2006.881488
[32] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory. Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, 15, xii+193 (1994), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA · Zbl 0816.93004 · doi:10.1137/1.9781611970777
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.