×

Minimal length elements of finite Coxeter groups. (English) Zbl 1272.20042

Given a group and an automorphism let us consider the twisted conjugacy classes (also known as Reidemeister classes). With respect to a set of generators, one can look at the elements of one twisted class which have minimal length. One would like to study certain properties of those elements of minimal length in some concrete cases. Those properties have been studied by M. Geck et al., [J. Algebra 229, No. 2, 570-600 (2000; Zbl 1042.20026); Adv. Math. 102, No. 1, 79-94 (1993; Zbl 0816.20034)], and X. He, [Adv. Math. 215, No. 2, 469-503 (2007; Zbl 1149.20035)] when the group \(G\) is a finite Coxeter group and the automorphism permutes the reflections of the finite Coxeter group. The properties, refered to as “remarkable properties”, roughly speaking consist in being able to move from any element of the twisted conjugacy class to an element of minimal length using a finite number of times the twisted relation with respect to elements of the group which are reflections in such way that the length of the word in each step does not increase.
The main result of the paper is: Theorem. Let \((W,S)\) be a Coxeter group, and let \(\delta\colon W\to W\) be an automorphism sending simple reflections to simple reflections. Let \(\mathcal O\) be a \(\delta\)-twisted conjugacy class in \(W\), and let \(\mathcal O_{\min}\) be the set of minimal length elements in \(\mathcal O\). Then
(1) for each \(w\in\mathcal O\), there exists \(w'\in\mathcal O_{\min}\) such that \(w\to_\delta w'\);
(2) let \(w,w'\in\mathcal O_{\min}\); then \(w\sim w'\).
The above theorem is proved in two papers refered to above via case-by-case analysis. The main goal of the paper under review is to give a case-free proof of this result. As important tool, the authors give a geometric interpretation of the twisted classes using an embbeding of \(\langle\delta\rangle\ltimes W\) on \(\mathrm{GL}(V)\) where \(V\) is a vector space. After they prove the main result in section 3, they then specialize to the so called elliptic conjugacy classes and obtain even stronger results than the main one. At the end they look to the braid monoid associated with \((W,S)\) and they study good elements of the braid monoid in the same spirit as they have done with the twisted classes in section 3. In the introduction one finds several comments which indicate other advantages and consequences of the approach used.

MSC:

20F55 Reflection and Coxeter groups (group-theoretic aspects)
20E45 Conjugacy classes for groups
51F15 Reflection groups, reflection geometries
55M20 Fixed points and coincidences in algebraic topology

References:

[1] C. Bonnafé and R. Rouquier, Affineness of Deligne-Lusztig varieties for minimal length elements , J. Algebra 320 (2008), 1200-1206. · Zbl 1195.20048 · doi:10.1016/j.jalgebra.2007.12.029
[2] N. Bourbaki, Elements of Mathematics: Lie Groups and Lie Algebras (chapters 4-6) , Elem. Math. (Berlin), Springer, Berlin, 2002. · Zbl 0983.17001
[3] M. Broué and J. Michel, “Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées” in Finite Reductive Groups (Luminy, 1994) , Progr. Math. 141 , Birkhäuser, Boston, 1997, 73-139. · Zbl 1029.20500
[4] F. Digne and J. Michel, Parabolic Deligne-Lusztig varieties , preprint, [math.GR] 1110.4863 · Zbl 1322.14072
[5] M. Geck, S. Kim, and G. Pfeiffer, Minimal length elements in twisted conjugacy classes of finite Coxeter groups , J. Algebra 229 (2000), 570-600. · Zbl 1042.20026 · doi:10.1006/jabr.1999.8253
[6] M. Geck and J. Michel, “Good” elements in finite Coxeter groups and representations of Iwahori-Hecke algebras , Proc. Lond. Math. Soc. (3) 74 (1997), 275-305. · Zbl 0877.20027 · doi:10.1112/S0024611597000105
[7] M. Geck and G. Pfeiffer, On the irreducible characters of Hecke algebras , Adv. Math. 102 (1993), 79-94. · Zbl 0816.20034 · doi:10.1006/aima.1993.1056
[8] M. Geck and G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras , London Math. Soc. Monogr. Ser. 21 , Oxford Univ. Press, New York, 2000. · Zbl 0996.20004
[9] X. He, Minimal length elements in some double cosets of Coxeter groups , Adv. Math. 215 (2007), 469-503. · Zbl 1149.20035 · doi:10.1016/j.aim.2007.04.005
[10] X. He, On the affineness of Deligne-Lusztig varieties , J. Algebra 320 (2008), 1207-1219. · Zbl 1195.20050 · doi:10.1016/j.jalgebra.2007.12.028
[11] X. He and G. Lusztig, A generalization of Steinberg’s cross section , J. Amer. Math. Soc. 25 (2012), 739-757. · Zbl 1252.20047 · doi:10.1090/S0894-0347-2012-00728-0
[12] G. Lusztig, Characters of Reductive Groups over a Finite Field , Ann. of Math. Stud. 107 , Princeton Univ. Press, Princeton, 1984. · Zbl 0556.20033
[13] G. Lusztig, Rationality properties of unipotent representations , Special issue in celebration of Claudio Procesi’s 60th birthday, J. Algebra 258 (2002), 1-22. · Zbl 1141.20300 · doi:10.1016/S0021-8693(02)00514-8
[14] G. Lusztig, On certain varieties attached to a Weyl group element , Bull. Inst. Math. Acad. Sin. (N.S.) 6 (2011), 377-414. · Zbl 1288.20059
[15] S. Orlik and M. Rapoport, Deligne-Lusztig varieties and period domains over finite fields , J. Algebra 320 (2008), 1220-1234. · Zbl 1222.14102 · doi:10.1016/j.jalgebra.2008.03.035
[16] M. Rapoport, personal communication, August 2011.
[17] T. A. Springer, Regular elements of finite reflection groups , Invent. Math. 25 (1974), 159-198. · Zbl 0287.20043 · doi:10.1007/BF01390173
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.