Xu, Hong-Yan; Liu, Bing-Xiang; Tang, Ke-Zong Some properties of meromorphic solutions of systems of complex \(q\)-shift difference equations. (English) Zbl 1272.30048 Abstr. Appl. Anal. 2013, Article ID 680956, 6 p. (2013). Summary: In view of Nevanlinna theory, we study the properties of meromorphic solutions of systems of a class of complex difference equations. Some results obtained improve and extend the previous theorems given by Gao. Cited in 5 Documents MSC: 30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory 39B32 Functional equations for complex functions 39A10 Additive difference equations PDF BibTeX XML Cite \textit{H.-Y. Xu} et al., Abstr. Appl. Anal. 2013, Article ID 680956, 6 p. (2013; Zbl 1272.30048) Full Text: DOI References: [1] Hayman, W. K., Meromorphic Functions. Meromorphic Functions, Oxford Mathematical Monographs (1964), Oxford, UK: Clarendon Press, Oxford, UK · Zbl 0115.06203 [2] Yang, L., Value Distribution Theory (1993), Berlin, Germany: Springer, Berlin, Germany [3] Yang, C.-C.; Yi, H.-X., Uniqueness Theory of Meromorphic Functions. Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications, 557 (2003), Dordrecht, The Netherlands: Kluwer Academic, Dordrecht, The Netherlands · Zbl 1070.30011 [4] Ablowitz, M. J.; Halburd, R.; Herbst, B., On the extension of the Painlevé property to difference equations, Nonlinearity, 13, 3, 889-905 (2000) · Zbl 0956.39003 [5] Barnett, D. C.; Halburd, R. G.; Morgan, W.; Korhonen, R. J., Nevanlinna theory for the \(q\)-difference operator and meromorphic solutions of \(q\)-difference equations, Proceedings of the Royal Society of Edinburgh A, 137, 3, 457-474 (2007) · Zbl 1137.30009 [6] Gundersen, G. G.; Heittokangas, J.; Laine, I.; Rieppo, J.; Yang, D., Meromorphic solutions of generalized Schröder equations, Aequationes Mathematicae, 63, 1-2, 110-135 (2002) · Zbl 1012.30016 [7] Heittokangas, J.; Korhonen, R.; Laine, I.; Rieppo, J.; Tohge, K., Complex difference equations of Malmquist type, Computational Methods and Function Theory, 1, 1, 27-39 (2001) · Zbl 1013.39001 [8] Heittokangas, J.; Korhonen, R.; Laine, I.; Rieppo, J.; Zhang, J., Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, Journal of Mathematical Analysis and Applications, 355, 1, 352-363 (2009) · Zbl 1180.30039 [9] Zhang, J.; Korhonen, R., On the Nevanlinna characteristic of \(f(q z)\) and its applications, Journal of Mathematical Analysis and Applications, 369, 2, 537-544 (2010) · Zbl 1198.30033 [10] Chiang, Y.-M.; Feng, S.-J., On the Nevanlinna characteristic of \(f(z + \eta)\) and difference equations in the complex plane, Ramanujan Journal, 16, 1, 105-129 (2008) · Zbl 1152.30024 [11] Halburd, R. G.; Korhonen, R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, Journal of Mathematical Analysis and Applications, 314, 2, 477-487 (2006) · Zbl 1085.30026 [12] Bergweiler, W.; Ishizaki, K.; Yanagihara, N., Growth of meromorphic solutions of some functional equations. I, Aequationes Mathematicae, 63, 1-2, 140-151 (2002) · Zbl 1009.39022 [13] Chen, Z.-X., Growth and zeros of meromorphic solution of some linear difference equations, Journal of Mathematical Analysis and Applications, 373, 1, 235-241 (2011) · Zbl 1208.39028 [14] Halburd, R. G.; Korhonen, R. J., Finite-order meromorphic solutions and the discrete Painlevé equations, Proceedings of the London Mathematical Society, 94, 2, 443-474 (2007) · Zbl 1119.39014 [15] Halburd, R. G.; Korhonen, R. J., Nevanlinna theory for the difference operator, Annales Academiæ Scientiarum Fennicæ, 31, 2, 463-478 (2006) · Zbl 1108.30022 [16] Laine, I.; Rieppo, J.; Silvennoinen, H., Remarks on complex difference equations, Computational Methods and Function Theory, 5, 1, 77-88 (2005) · Zbl 1093.39018 [17] Silvennoinen, H., Meromorphic Solutions of Some Composite Functional Equations. Meromorphic Solutions of Some Composite Functional Equations, Annales Academiae Scientiarum Fennicae, Mathematica, Dissertationes, 132 (2003), Helsinki · Zbl 1026.30026 [18] Wang, J., Growth and poles of meromorphic solutions of some difference equations, Journal of Mathematical Analysis and Applications, 379, 1, 367-377 (2011) · Zbl 1222.30023 [19] Zheng, X.-M.; Chen, Z.-X., Some properties of meromorphic solutions of \(q\)-difference equations, Journal of Mathematical Analysis and Applications, 361, 2, 472-480 (2010) · Zbl 1185.39006 [20] Korhonen, R., A new Clunie type theorem for difference polynomials, Journal of Difference Equations and Applications, 17, 3, 387-400 (2011) · Zbl 1213.39005 [21] Zheng, X. M.; Chen, Z. X., Value distribution of meromorphic solutions of some \(q\)-difference equations, Journal of Mathematical Research and Exposition, 31, 4, 698-704 (2011) · Zbl 1249.30109 [22] Gao, L., On meromorphic solutions of a type of system of composite functional equations, Acta Mathematica Scientia B, 32, 2, 800-806 (2012) · Zbl 1265.39037 [23] Gao, L. Y., Systems of complex difference equations of Malmquist type, Acta Mathematica Sinica, 55, 2, 293-300 (2012) · Zbl 1265.39035 [24] Gao, L., Estimates of \(N\)-function and \(m\)-function of meromorphic solutions of systems of complex difference equations, Acta Mathematica Scientia B, 32, 4, 1495-1502 (2012) · Zbl 1274.39037 [25] Wang, H.; Xu, H. Y.; Liu, B. X., The poles and growth of solutions of systems of complex difference equations, Advances in Difference Equations, 2013 (2013) [26] Xu, H.-Y.; Cao, T.-B.; Liu, B.-X., The growth of solutions of systems of complex q-shift difference equations, Advances in Difference Equations, 2012 (2012) · Zbl 1377.39016 [27] Liu, K.; Qi, X.-G., Meromorphic solutions of \(q\)-shift difference equations, Annales Polonici Mathematici, 101, 3, 215-225 (2011) · Zbl 1235.30023 [28] Laine, I., Nevanlinna Theory and Complex Differential Equations. Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Mathematics, 15 (1993), Berlin, Germany: Walter de Gruyter, Berlin, Germany · Zbl 0784.30002 [29] Xu, H. Y.; Tu, J., Some properties of meromorphic solutions of \(q\)-shift difference equations, Journal of Mathematical Study, 45, 2, 124-132 (2012) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.