×

Symmetry classification of first integrals for scalar linearizable second-order ODEs. (English) Zbl 1272.34046

The authors discuss how one can determine the relationship between the symmetries and the first integrals of linear or linearizable second-order scalar ODEs. A classification of point symmetries of first integrals for such linear ODEs is considered; there are cases with symmetry algebras with \(k\) generators, with \(0 \leq k \leq 3\), the maximal case is unique.

MSC:

34C14 Symmetries, invariants of ordinary differential equations
34A05 Explicit solutions, first integrals of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] S. Lie, “Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten,” Archiv Der Mathematik, vol. 8-9, p. 187, 1883. · JFM 15.0751.01
[2] F. M. Mahomed, “Symmetry group classification of ordinary differential equations: survey of some results,” Mathematical Methods in the Applied Sciences, vol. 30, no. 16, pp. 1995-2012, 2007. · Zbl 1135.34029
[3] F. M. Mahomed and P. G. L. Leach, “Symmetry Lie algebras of nth order ordinary differential equations,” Journal of Mathematical Analysis and Applications, vol. 151, no. 1, pp. 80-107, 1990. · Zbl 0719.34018
[4] P. G. L. Leach and F. M. Mahomed, “Maximal subalgebra associated with a first integral of a system possessing sl (3,R) symmetry,” Journal of Mathematical Physics, vol. 29, no. 8, pp. 1807-1813, 1988. · Zbl 0658.58037
[5] K. S. Govinder and P. G. L. Leach, “The algebraic structure of the first integrals of third-order linear equations,” Journal of Mathematical Analysis and Applications, vol. 193, no. 1, pp. 114-133, 1995. · Zbl 0986.34033
[6] A. H. Kara and F. M. Mahomed, “A basis of conservation laws for partial differential equations,” Journal of Nonlinear Mathematical Physics, vol. 9, supplement 2, pp. 60-72, 2002. · Zbl 1362.35024
[7] A. M. Tresse, “Sur les invariants différentiels des groupes continus de transformations,” Acta Mathematica, vol. 18, no. 1, pp. 1-88, 1894. · JFM 25.0641.01
[8] F. M. Mahomed and P. G. L. Leach, “The Lie algebra sl (3,R) and linearization,” Quaestiones Mathematicae, vol. 12, no. 2, pp. 121-139, 1989. · Zbl 0683.34004
[9] F. M. Mahomed and P. G. L. Leach, “The linear symmetries of a nonlinear differential equation,” Quaestiones Mathematicae, vol. 8, no. 3, pp. 241-274, 1985. · Zbl 0618.34009
[10] F. M. Mahomed and P. G. L. Leach, “Lie algebras associated with scalar second-order ordinary differential equations,” Journal of Mathematical Physics, vol. 30, no. 12, pp. 2770-2777, 1989. · Zbl 0724.34003
[11] N. H. Ibragimov and F. M. Mahomed, “Ordinary differential equations,” in CRC Handbook of Lie Group Analysis of Differential Equations, N. H. Ibragimov, Ed., vol. 3, p. 191, CRC Press, Boca Raton, Fla, USA, 1996.
[12] F. M. Mahomed, A. H. Kara, and P. G. L. Leach, “Lie and Noether counting theorems for one-dimensional systems,” Journal of Mathematical Analysis and Applications, vol. 178, no. 1, pp. 116-129, 1993. · Zbl 0783.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.