Robertson, David; Szymański, Wojciech \(C^{\ast }\)-algebras associated to \(C^{\ast }\)-correspondences and applications to mirror quantum spheres. (English) Zbl 1272.46048 Ill. J. Math. 55, No. 3, 845-870 (2011). Summary: The structure of the \(C^{\ast }\)-algebras corresponding to even-dimensional mirror quantum spheres is investigated. It is shown that they are isomorphic to both Cuntz-Pimsner algebras of certain \(C^{\ast }\)-correspondences and \(C^{\ast }\)-algebras of certain labelled graphs. In order to achieve this, categories of labelled graphs and \(C^{\ast }\)-correspondences are studied. A functor from labelled graphs to \(C^{\ast }\)-correspondences is constructed, such that the corresponding associated \(C^{\ast }\)-algebras are isomorphic. Furthermore, it is shown that \(C^{\ast }\)-correspondences for the mirror quantum spheres arise via a general construction of restricted direct sums. Cited in 3 Documents MSC: 46L08 \(C^*\)-modules 46L65 Quantizations, deformations for selfadjoint operator algebras 46L85 Noncommutative topology Keywords:mirror quantum spheres; Cuntz-Pimsner algebras; labelled graphs; \(C^{\ast }\)-correspondences PDF BibTeX XML Cite \textit{D. Robertson} and \textit{W. Szymański}, Ill. J. Math. 55, No. 3, 845--870 (2011; Zbl 1272.46048) Full Text: arXiv Euclid OpenURL References: [1] D. Bakić and B. Guljaš, On a class of module maps of Hilbert \(C^*\)-modules , Math. Commun. 7 (2002), 177-192. · Zbl 1031.46066 [2] D. Bakić and B. Guljaš, Extensions of Hilbert \(C^*\)-modules II , Glasgow Math. Ser. III 38 (2003), 341-357. · Zbl 1057.46046 [3] T. Bates, J. H. Hong, I. Raeburn and W. Szymański, The ideal structure of the \(C^*\)-algebras of infinite graphs , Illinois J. Math. 46 (2002), 1159-1176. · Zbl 1036.46038 [4] T. Bates and D. Pask, \(C^*\)-algebras of labelled graphs , J. Operator Theory 57 (2007), 207-226. · Zbl 1113.46049 [5] T. Bates and D. Pask, \(C^*\)-algebras of labelled graphs II: Simplicity results , Math. Scand. 104 (2009), 249-274. · Zbl 1247.46046 [6] K. Deicke, J. H. Hong and W. Szymański, Stable rank of graph algebras. Type \(I\) graph algebras and their limits , Indiana Univ. Math. J. 52 (2003), 963-980. · Zbl 1080.46038 [7] D. Drinen and M. Tomforde, Computing \(K\)-theory and \(Ext\) for graph \(C^*\)-algebras , Illinois J. Math. 46 (2002), 81-91. · Zbl 1024.46023 [8] N. Fowler, P. Muhly and I. Raeburn, Representations of Cuntz-Pimsner algebras , Indiana Univ. Math. J. 52 (2003), 569-605. · Zbl 1034.46054 [9] P. Hajac, R. Matthes and W. Szymański, Noncommutative index theory for mirror quantum spheres , C. R. Math. Acad. Sci. Paris 343 (2006), 731-736. · Zbl 1114.46052 [10] E. Hawkins and G. Landi, Fredholm modules for quantum Euclidean spheres , J. Geom. Phys. 49 (2004), 272-293. · Zbl 1065.19002 [11] J. H. Hong, Decomposability of graph \(C^*\)-algebras , Proc. Amer. Math. Soc. 133 (2005), 115-126. · Zbl 1056.46049 [12] J. H. Hong and W. Szymański, Quantum spheres and projective spaces as graph algebras , Commun. Math. Phys. 232 (2002), 157-188. · Zbl 1015.81029 [13] J. H. Hong and W. Szymański, Noncommutative balls and their doubles , Czechoslovak J. Phys. 56 (2006), 1173-1178. · Zbl 1109.46060 [14] J. H. Hong and W. Szymański, Noncommutative balls and mirror quantum spheres , J. Lond. Math. Soc. (2) 77 (2008), 607-626. · Zbl 1148.46038 [15] T. Kajiwara, C. Pinzari and Y. Watatani, Ideal structure and simplicity of the \(C^*\)-algebras generated by Hilbert bimodules , J. Funct. Anal. 159 (1998), 295-322. · Zbl 0942.46035 [16] T. Katsura, A construction of \(C^*\)-algebras from \(C^*\)-correspondences , Advances in quantum dynamics (South Hadley, MA, 2002), Amer. Math. Soc., Providence, RI, 2003, pp. 173-182. · Zbl 1049.46038 [17] T. Katsura, On \(C^*\)-algebras associated with \(C^*\)-correspondences , J. Funct. Anal. 217 (2004), 366-401. · Zbl 1067.46054 [18] T. Katsura, Ideal structure of \(C^*\)-algebras associated with \(C^*\)-correspondences , Pacific J. Math. 230 (2007), 107-145. · Zbl 1152.46048 [19] A. Kumjian, D. Pask and I. Raeburn, Cuntz-Krieger algebras of directed graphs , Pacific J. Math. 184 (1998), 1503-1519. · Zbl 0917.46056 [20] E. C. Lance, Hilbert \(C^*\)-modules–A toolkit for operator algebraists , Cambridge University Press, Cambridge, 1995. · Zbl 0822.46080 [21] P. Muhly and M. Tomforde, Adding tails to \(C^*\)-correspondences , Doc. Math. 9 (2004), 79-106. · Zbl 1049.46045 [22] M. V. Pimsner, A class of \(C^*\)-algebras generalizing both Cuntz-Krieger algebras and crossed products by \(\mathbb{Z}\) , Free probability theory, Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 189-212. · Zbl 0871.46028 [23] I. Raeburn and W. Szymański, Cuntz-Krieger algebras of infinite graphs and matrices , Trans. Amer. Math. Soc. 356 (2004), 39-59. · Zbl 1030.46067 [24] I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace \(C^*\)-algebras , Math. Surveys and Monographs, vol. 60, Amer. Math. Soc., Providence, RI, 1998. · Zbl 0922.46050 [25] W. Szymański, On semiprojectivity of \(C^*\)-algebras of directed graphs , Proc. Amer. Math. Soc. 130 (2002), 1391-1399. · Zbl 1014.46034 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.