×

Potential type operators and transmission problems for strongly elliptic second-order systems in Lipschitz domains. (English. Russian original) Zbl 1272.47065

Funct. Anal. Appl. 43, No. 3, 165-183 (2009); translation from Funkts. Anal. Prilozh. 43, No. 3, 3-25 (2009).
Summary: We consider a strongly elliptic second-order system in a bounded \(n\)-dimensional domain \(\Omega^+\) with Lipschitz boundary \(\Gamma\), \(n\geqslant 2\). The smoothness assumptions on the coefficients are minimized. For convenience, we assume that the domain is contained in the standard torus \(\mathbb T^n\). In previous papers, we obtained results on the unique solvability of the Dirichlet and Neumann problems in the spaces \(H_p^\sigma\) and \(B_p^\sigma\) without use of surface potentials. In the present paper, using the approach proposed by Costabel and McLean, we define surface potentials and discuss their properties assuming that the Dirichlet and Neumann problems in \(\Omega^+\) and the complementing domain \(\Omega^-\) are uniquely solvable. In particular, we prove the invertibility of the integral single layer operator and the hypersingular operator in Besov spaces on \(\Gamma\). We describe some of their spectral properties as well as those of the corresponding transmission problems.

MSC:

47G40 Potential operators
35J57 Boundary value problems for second-order elliptic systems
35Q30 Navier-Stokes equations
76D07 Stokes and related (Oseen, etc.) flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. S. Agranovich, ”Elliptic operators on closed manifolds,” in: Itogi Nauki i Tekhniki. Current Problems in Mathematics. Fundamental Directions, vol. 63, VINITI, Moscow, 1990, 5–129; English transl.: Encycl. Math. Sci., vol. 63, Springer-Verlag, Berlin, 1994, 1–130. · Zbl 0802.58050
[2] M. S. Agranovich, ”Spectral properties of potential type operators for a class of strongly elliptic systems on smooth and Lipschitz surfaces,” Trudy Moscow Mat. Obshch., 62 (2001), 5–55; English transl.: Trans. Moscow Math. Soc., 2001, 1–47. · Zbl 1056.35128
[3] M. S. Agranovich, ”Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains,” Uspekhi Mat. Nauk, 57:5 (2002), 3–78; English transl.: Russian Math. Surveys, 57:5 (2002), 847–919. · Zbl 1057.35019 · doi:10.4213/rm552
[4] M. S. Agranovich, ”Strongly elliptic second order systems with spectral parameter in transmission conditions on a nonclosed surface,” in: Operator Theory: Advances and Applications, vol. 164, Birkhäuser, Basel, 2006, 1–21. · Zbl 1161.35453
[5] M. S. Agranovich, ”Regularity of variational solutions to linear boundary value problems in Lipschitz domains,” Funkts. Anal. Prilozhen., 40:4 (2006), 83–103; English transl.: Functional Anal. Appl., 40:4 (2006), 313–329. · Zbl 1169.35327 · doi:10.4213/faa849
[6] M. S. Agranovich, ”To the theory of the Dirichlet and Neumann problems for strongly elliptic systems in Lipschitz domains,” Funkts. Anal. Prilozhen., 41:4 (2007), 1–21; English transl.: Functional Anal. Appl., 41:4 (2007), 247–263. · Zbl 1159.35319 · doi:10.4213/faa2875
[7] M. S. Agranovich, ”Spectral boundary value problems in Lipschitz domains for strongly elliptic systems in Banach spaces H p {\(\sigma\)} and B p {\(\sigma\)} ,” Funkts. Anal. Prilozhen., 42:4 (2008), 2–23; English transl.: Functional Anal. Appl., 42:4 (2008), 249–267. · doi:10.4213/faa2933
[8] M. S. Agranovich, ”Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary,” Russian J. Math. Phys., 15:2 (2008), 146–155. · Zbl 1181.46022 · doi:10.1134/S1061920808020027
[9] M. S. Agranovich, B. A. Amosov, and M. Levitin, ”Spectral problems for the Lamé system with spectral parameter in boundary conditions on smooth or nonsmooth boundary,” Russian J. Math. Phys., 6:3 (1999), 247–281. · Zbl 1059.74504
[10] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, and N. N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH, Berlin etc., 1999. (Revised English edition of [37].) · Zbl 0929.65097
[11] M. S. Agranovich and R. Mennicken, ”Spectral boundary value problems for the Helmholtz equation with spectral parameter in boundary conditions on a nonsmooth surface,” Mat. Sb., 190:1 (1999), 29–68; English transl.: Russian Acad. Sci. Sb. Math., 190 (1999), 29–69. · Zbl 0937.35026 · doi:10.4213/sm377
[12] A. P. Calderón, ”Cauchy integrals on Lipschitz curves and related operators,” Proc. Nat. Acad. Sci. USA, 74 (1977), 1324–1327. · Zbl 0373.44003 · doi:10.1073/pnas.74.4.1324
[13] R. R. Coifman, A. McIntosh, and Y. Meyer, ”L’intégrale de Cauchy definit un opérateur borné sur L 2 pour les courbes lipschitziennes,” Ann. of Math., 116:2 (1982), 361–388. · Zbl 0497.42012 · doi:10.2307/2007065
[14] M. Costabel, ”Boundary integral operators in Lipschitz domains: elementary results,” SIAM J. Math. Anal., 19:3 (1988), 613–626. · Zbl 0644.35037 · doi:10.1137/0519043
[15] M. Costabel and M. Dauge, ”On representation formulas and radiation conditions,” Math. Methods Appl. Sci., 20:2 (1997), 133–150. · Zbl 0876.35021 · doi:10.1002/(SICI)1099-1476(19970125)20:2<133::AID-MMA841>3.0.CO;2-Y
[16] M. Costabel and W. L. Wendland, ”Strong ellipticity of boundary integral operators,” J. Reine Angew. Math., 372 (1986), 34–63. · Zbl 0628.35027
[17] B. E. J. Dahlberg, C. E. Kenig, and G. C. Verchota, ”Boundary value problems for the systems of elastostatics in Lipschitz domains,” Duke Math. J., 57:3 (1988), 795–818. · Zbl 0699.35073 · doi:10.1215/S0012-7094-88-05735-3
[18] I. M. Gelfand and G. E. Shilov, Generalized Functions. Vol. 1, Fizmatgiz, Moscow, 1959; English transl.: Academic Press, New York-London, 1964. · Zbl 0091.11102
[19] D. Jerison and C. E. Kenig, ”The inhomogeneous Dirichlet problem in Lipschitz domains,” J. Funct. Anal., 130:1 (1995), 164–219. · Zbl 0832.35034 · doi:10.1006/jfan.1995.1067
[20] A. Jonsson and H. Wallin, Function Spaces on Subsets of \(\mathbb{R}\)n, Math. Rep., Ser. 2, no. 1, Harwood Academic Publ., 1984. · Zbl 0875.46003
[21] P. D. Lax and A. N. Milgram, ”Parabolic equations,” in: Contributions to the Theory of Partial Differential Equations, Annals of Math. Studies, vol. 33, 1954, 167–190. · Zbl 0058.08703
[22] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univ. Press, Cambridge, 2000. · Zbl 0948.35001
[23] V. Maz’ya, M. Mitrea, and T. Shaposhnikova, The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, http://arxiv.org/abs/math/0701898 .
[24] V. Maz’ya, M. Mitrea, and T. Shaposhnikova, ”The inhomogeneous Dirichlet problem for the Stokes system in Lipschitz domains with unit normals close to VMO,” Functs. Anal. Prilozhen., 43:3 (2009), 65–88; English transl.: Functional Anal. Appl., 43:3 (2009), 217–235. · doi:10.4213/faa2960
[25] D. Mitrea, M. Mitrea, and M. Taylor, ”Layer potentials, the Hodge Laplacian, and global boundary value problems in nonsmooth Riemannian in Riemannian manifolds,” Mem. Amer. Math. Soc., 150:713 (2001). · Zbl 1003.35001
[26] M. Mitrea and M. Taylor, ”Boundary layer methods for Lipschitz domains in Riemannian manifolds,” J. Funct. Anal., 163:2 (1999), 181–251. · Zbl 0930.58014 · doi:10.1006/jfan.1998.3383
[27] M. Mitrea and M. Taylor, ”Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem,” J. Funct. Anal., 176:1 (2000), 1–79. · Zbl 0968.58023 · doi:10.1006/jfan.2000.3619
[28] J. Nečas, Les methodes directes en théorie des équations elliptiques, Masson, Paris, 1967.
[29] L. Nirenberg, ”Remarks on strongly elliptic partial differential equations,” Comm. Pure Appl. Math., 8 (1965), 649–675. · Zbl 0067.07602
[30] O. A. Oleinik, A. S. Shamaev, and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North Holland, Amsterdam, 1992. · Zbl 0572.73059
[31] M. Ruzhansky and V. Turunen, ”On the Fourier analysis of operators on the torus,” in: Modern Trends in Pseudo-Differential Operators, Oper. Theory Adv. Appl., vol. 172, Birkhäuser, Basel, 2007, 87–105. · Zbl 1160.35044
[32] V. S. Rychkov, ”On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains,” J. London Math. Soc. (2), 60:1 (1999), 237–257. · Zbl 0940.46017 · doi:10.1112/S0024610799007723
[33] G. Savaré, ”Regularity results for elliptic equations in Lipschitz domains,” J. Funct. Anal., 152:1 (1998), 176–201. · Zbl 0889.35018 · doi:10.1006/jfan.1997.3158
[34] I. Ya. Shneiberg, ”Spectral properties of linear operators in interpolation families of Banach spaces,” Matem. Issled., 9:2 (1974), 214–227.
[35] H. Triebel, ”Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers,” Rev. Mat. Complut., 15:2 (2002), 475–524. · Zbl 1034.46033
[36] M. I. Vishik, ”On strongly elliptic systems of differential equations,” Mat. Sb., 29(71):3 (1951), 615–676.
[37] N. N. Voitovich, B. Z. Katsenelenbaum, and A. N. Sivov, Generalized Method of Eigenoscillations in Diffraction Theory, with supplement by M. S. Agranovich ”Spectral properties of diffraction problems”, 289–416 [in Russian], Nauka, Moscow, 1977.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.