×

zbMATH — the first resource for mathematics

\(R_{\text{cl}}\)-supercontinuous functions. (English) Zbl 1272.54015
Summary: A new class of functions called ‘\(R_{\text{cl}}\)-supercontinuous functions’ is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity that already exist in the literature is elaborated. The class of \(R_{\text{cl}}\)-supercontinuous functions properly contains the class of cl-supercontinuous \((\equiv\) clopen continuous) functions D. Singh [Appl. Gen. Topol. 8, No. 2, 293–300 (2007; Zbl 1151.54012)]; I.L. Reilly and M.K. Vamanamurthy [Indian J. Pure Appl. Math. 14, 767–772 (1983; Zbl 0509.54007)] and is strictly contained in the class of \(R_\delta\)-supercontinuous functions which in its turn, is properly contained in the class of \(R\)-supercontinuous functions J.K. Kohli, D. Singh and J. Aggarwal [Demonstr. Math. 43, No. 3, 703–723 (2010; Zbl 1217.54016)].

MSC:
54C08 Weak and generalized continuity
54C10 Special maps on topological spaces (open, closed, perfect, etc.)
54D10 Lower separation axioms (\(T_0\)–\(T_3\), etc.)
54D20 Noncompact covering properties (paracompact, Lindelöf, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [1] A. Appert, Ky-Fan, Espaces topologiques intermédiares, Problème de la distanciation (French), Actualités Sci. Ind. No. 1121. Herman and Cie, Paris (1951), 160. · Zbl 0045.43901
[2] [2] C. E. Aull, Notes on separation by continuous functions, Indag. Math. 31 (1969), 458-461. · Zbl 0198.27402
[3] [3] E. Ekici, Generalizations of perfectly continuous, regular set connected and clopen functions, Acta Math. Hungar. 107(3) (2005), 193-205. · Zbl 1081.54011
[4] [4] E. Hewitt, On two problems of Urysohn, Ann. of Math. 47(3) (1946), 503-509. · Zbl 0060.39511
[5] [5] J. K. Kohli, A unified view of (complete) regularity and certain variants of (complete) regularity, Canad. J. Math. 36 (1984), 783-794. · Zbl 0553.54006
[6] [6] J. K. Kohli, A framework including the theories of continuous functions and certain non-continuous functions, Note Mat. 10(1) (1990), 37-45. · Zbl 0780.54008
[7] [7] J. K. Kohli, A unified approach to continuous and certain non-continuous functions, J. Austral. Math. Soc. Ser. A 48 (1990), 347-358. · Zbl 0702.54010
[8] [8] J. K. Kohli, A unified approach to continuous and certain non-continuous functions II, Bull. Austral. Math. Soc. 41 (1990), 57-74. · Zbl 0705.54010
[9] [9] J. K. Kohli, Change of topology, characterizations and product theorems for semilocally P-spaces, Houston J. Math. 17 (1991), 335-350. · Zbl 0781.54007
[10] [10] J. K. Kohli, R. Kumar, z-supercontinuous functions, Indian J. Pure Appl. Math. 33(7) (2002), 1097-1108. · Zbl 1010.54012
[11] [11] J. K. Kohli, D. Singh, Dδ-supercontinuous functions, Indian J. Pure Appl. Math. 34(7) (2003), 1089-1100.
[12] [12] J. K. Kohli, D. Singh, Almost cl-supercontinuous functions, Appl. Gen. Topol. 10(1) (2009), 1-12. · Zbl 1190.54008
[13] [13] J. K. Kohli, D. Singh, J. Aggarwal, F-supercontinuous functions, Appl. Gen. Topol. 10(1) (2009), 69-83. · Zbl 1189.54013
[14] [14] J. K. Kohli, D. Singh, J. Aggarwal, R-supercontinuous functions, Demonstratio Math. 43(3) (2010), 703-723.
[15] [15] J. K. Kohli, D. Singh, C. P. Arya, Perfectly continuous functions, Stud. Cercet. Ştiint. Ser. Mat. 18 (2008), 99-110. · Zbl 1199.54078
[16] [16] J. K. Kohli, D. Singh, B. K. Tyagi, Rδ-supercontinuous functions, (preprint). · Zbl 1272.54015
[17] [17] J. K. Kohli, D. Singh, B. K. Tyagi, Rz-supercontinuous functions, (preprint). · Zbl 1272.54015
[18] [18] N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly 67 (1960), 269. · Zbl 0156.43305
[19] [19] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc. 148 (1970), 265-272. · Zbl 0209.26904
[20] [20] H. Maki, On generalizing semi-open and preopen sets, Report for Meeting on Topological Spaces Theory and its Applications, August 1996, Yatsushiro College of Technology, pp. 13-18.
[21] [21] B. M. Munshi, D. S. Bassan, Supercontinuous mappings, Indian J. Pure Appl. Math. 13 (1982), 229-236. · Zbl 0483.54007
[22] [22] T. Noiri, On δ-continuous functions, J. Korean Math. Soc. 16 (1980), 161-166. · Zbl 0435.54010
[23] [23] T. Noiri, Supercontinuity and some strong forms of continuity, Indian J. Pure Appl. Math. 15(3) (1984), 241-250. · Zbl 0546.54016
[24] [24] V. Popa, T. Noiri, On M-continuous functions, An. Univ. “Dunarea de Jos”, Galati, Mat. Fiz, Mec. Teor. 18(23) (2000), 31-41.
[25] [25] V. Popa, T. Noiri, On the definitions of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 22 (2001), 9-18. · Zbl 0972.54011
[26] [26] V. Popa, T. Noiri, On weakly (τ, m)-continuous functions, Rend. Circ. Mat. Palermo 2, 51 (2002), 295-316. · Zbl 1098.54508
[27] [27] I. L. Reilly, M. K. Vamanamurthy, On super-continuous mappings, Indian J. Pure. Appl. Math. 14(6) (1983), 767-772. · Zbl 0509.54007
[28] [28] D. Singh, cl-supercontinuous functions, Appl. Gen. Topol. 8(2) (2007), 293-300. · Zbl 1151.54012
[29] [29] L. A. Steen, J. A. Seebach, Jr., Counter Examples in Topology, Springer Verlag, New York, 1978.
[30] [30] N. K. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. Ser. 2 78 (1968), 103-118.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.