×

zbMATH — the first resource for mathematics

Localized elastic fields in periodic waveguides with defects. (English. Russian original) Zbl 1272.74342
J. Appl. Mech. Tech. Phys. 52, No. 2, 311-320 (2011); translation from Prikl. Mekh. Tekh. Fiz. 52, No. 2, 183-194 (2011).
Summary: The variational method for determining localized waves (trapped modes) is modified for periodic elastic waveguides with partially clamped surfaces. Two sufficient conditions for the existence of localized fields in waveguides with defects (cavities with positive volume and cracks) are established. In the presence of elastic and geometrical symmetries, localized fields were also found in periodic elastic waveguides with surfaces free of external loads.

MSC:
74J10 Bulk waves in solid mechanics
74R10 Brittle fracture
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. A. Nazarov, ”Elastic spectrum for a spiked body,” Sib. Mat. Zh., 49, No. 5, 1105–1127 (2008). · Zbl 1224.35397 · doi:10.1007/s11202-008-0087-8
[2] O. A. Ladyzhenskaya, Boundary-Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973). · Zbl 0169.00206
[3] V. A. Kondrat’ev and O. A. Oleinik, ”Boundary-value problems for the system of elasticity theory in unbounded domains. Korn inequality,” Usp. Mat. Nauk, 43, No. 5, 55–98 (1988). · Zbl 0661.73001
[4] S. A. Nazarov, ”Korn inequalities for elastic junctions of massive bodies, thin plates, and rods,” Usp. Mat. Nauk, 63, No. 1, 37–110 (2008). · Zbl 1155.74027 · doi:10.4213/rm8545
[5] S. A. Nazarov, Asymptotic Theory of Thin Plates and Rods. Dimensionality Reduction and Integral Estimates [in Russian], Nauchnaya Kniga, Novosibirsk (2002).
[6] M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in Hilbert Space [in Russian], Izd. Leningr. Univ., Leningrad (1980).
[7] I. M. Gel’fand, ”Eigenfunction expansion of an equation with periodic coefficients,” Dokl. Akad. Nauk SSSR, 73, 1117–1120 (1950).
[8] S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter De Gruyter, Berlin, New York (1994). · Zbl 0806.35001
[9] P. Kuchment, Floquet Theory for Partial Differential Equations, Birchäuser, Basel (1993). · Zbl 0789.35002
[10] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1976). · Zbl 0342.47009
[11] S. A. Nazarov, ”Elliptic boundary-value problems with periodic coefficients in a cylinder,” Izv. Akad. Nauk SSSR, Ser. Mat., 45, No. 1, 101–112 (1981). · Zbl 0462.35034
[12] S. A. Nazarov, ”Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains,” in: Sobolev Spaces in Mathematics, Vol. 2, Springer, New York (2008), pp. 261–309. (Int. Math. Ser.; Vol. 9.) · Zbl 1208.35093
[13] S. A. Nazarov, ”Rayleigh wave for an elastic half-layer with a partially clamped periodic boundary,” Dokl. Ross. Akad. Nauk, 423, No. 1, 56–61 (2008).
[14] S. A. Nazarov, ”The opening of gaps in the spectrum of an elastic periodic waveguide with a free surface,” Zh. Vychisl. Mat. Mat. Fiz., 49, No. 2, 323–333 (2009).
[15] G. Cardone, V. Minutolo, and S. A. Nazarov, ”Gaps in the essential spectrum of periodic elastic waveguides,” Z. Angew. Math. Mech., 89, No. 9, 729–741 (2009). · Zbl 1189.35201 · doi:10.1002/zamm.200800221
[16] S. A. Nazarov, ”Gap in a continuous spectrum of an elastic waveguide with a partly clamped surface,” J. Appl. Mech. Tech. Phys., 51, No. 1, 114–124 (2010). · Zbl 1272.74341 · doi:10.1007/s10808-010-0018-x
[17] D. S. Jones, ”The eigenvalues of 2 u+\(\lambda\)u = 0 when the boundary conditions are given on semi-infinite domains,” Proc. Cambridge Philos. Soc., 49, 668–684 (1953). · Zbl 0051.07704 · doi:10.1017/S0305004100028875
[18] F. Ursell, ”Mathematical aspects of trapping modes in the theory of surface waves,” J. Fluid Mech., 18, 495–503 (1988).
[19] A.-S. Bonnet-Bendhia, J. Duterte, and P. Joly, ”Mathematical analysis of elastic surface waves in topographic waveguides,” Math. Models Methods Appl. Sci., 9, No. 5, 755–798 (1999). · Zbl 0946.74034 · doi:10.1142/S0218202599000373
[20] C. M. Linton and P. McIver, ”Embedded trapped modes in water waves and acustics,” Wave Motion, 45, 16–29 (2007). · Zbl 1231.76046 · doi:10.1016/j.wavemoti.2007.04.009
[21] I. V. Kamotskii and S. A. Nazarov, ”Elastic waves localized near periodic families of defects,” Dokl. Ross. Akad. Nauk, 368, No. 6, 771–773 (1999). · Zbl 1060.74559
[22] D. V. Evans, M. Levitin, and D. Vasil’ev, ”Existence theorems for trapped modes,” J. Fluid Mech., 261, 21–31 (1994). · Zbl 0804.76075 · doi:10.1017/S0022112094000236
[23] S. A. Nazarov, ”Trapped modes in a cylindrical elastic waveguide with a damping layer,” Zh. Vychisl. Mat. Mat. Fiz., 48, No. 5, 132–150 (2008).
[24] I. C. Gohberg and M. G. Krein, ”Introduction to the theory of non-selfadjoint operators,” Transl. Amer. Math. Soc., 18, (1969). · Zbl 0181.13504
[25] S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body, Holden-Day, San Francisco (1963).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.