×

zbMATH — the first resource for mathematics

Anisotropic effects on poroacoustic acceleration waves. (English) Zbl 1272.76219
Summary: A fully nonlinear wave analysis is performed for an acceleration wave which propagates through an anisotropic porous medium. The anisotropic effect of the body is clearly evident in the form for the wavespeeds. We also fully determine the wave amplitudes and the anisotropy is found to have a strong effect on wave amplitude attenuation. In particular, cross-diagonal effects of the inertia and permeability tensors play an important role.

MSC:
76Q05 Hydro- and aero-acoustics
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Auriault, J. L.: On the domain of validity of Brinkman’s equation, Trans. porous media 79, 215-223 (2009)
[2] Bargmann, S.; Steinmann, P.; Jordan, P. M.: On the propagation of second-sound in linear and nonlinear media: results from Green – naghdi theory, Phys. lett. A 372, 4418-4424 (2008) · Zbl 1221.80004
[3] Bowen, R. M.: Compressible porous media models by use of the theory of mixtures, Int. J. Eng. sci. 20, 697-735 (1982) · Zbl 0484.76102
[4] Chen, P. J.: Growth and decay of waves in solids, In handbuch der physik /3, 303-402 (1973)
[5] Chirita, S.; Ciarletta, M.: Spatial estimates for the constrained anisotropic elastic cylinder, J. elasticity 85, 189-213 (2006) · Zbl 1125.74017
[6] Chirita, S.; Danescu, A.; Ciarletta, M.: On the strong ellipticity of the anisotropic linearly elastic materials, J. elasticity 87, 1-27 (2007) · Zbl 1109.74008
[7] Christov, C. I.: On the evolution of localized wave packets governed by a dissipative wave equation, Wave motion 45, 154-161 (2008) · Zbl 1231.76264
[8] Christov, C. I.; Jordan, P. M.: Heat conduction paradox involving second sound propagation in moving media, Phys. rev. Lett. 94, 154301-1-154301-4 (2005)
[9] Christov, I.; Jordan, P. M.: Shock and traveling wave phenomena on an externally damped, non-linear string, Int. J. Nonlinear mech. 44, 511-519 (2009)
[10] Christov, I., Jordan, P.M., in press. On the propagation of second sound in nonlinear media: shock, acceleration and travelling wave results. J. Therm. Stress.
[11] Christov, I.; Jordan, P. M.; Christov, C. I.: Nonlinear acoustic propagation in homentropic perfect gases: a numerical study, Phys. lett. A 353, 273-280 (2006)
[12] Christov, I.; Jordan, P. M.; Christov, C. I.: Cumulative nonlinear effects in acoustic wave propagation, Comp. model. Eng. sci. 17, 47-54 (2007) · Zbl 1184.76847
[13] Christov, I.; Jordan, P. M.; Christov, C. I.: Modelling weakly nonlinear acoustic wave propagation, Quart. J. Mech. appl. Math. 60, 473-495 (2007) · Zbl 1125.76379
[14] Ciarletta, M.; Straughan, B.: Poroacoustic acceleration waves, Proc. roy. Soc. lond. A 462, 3493-3499 (2006) · Zbl 1149.74345
[15] Currò, C.; Valenti, G.; Sugiyama, M.; Taniguchi, S.: Propagation of an acceleration wave in layers of isotropic solids at finite temperatures, Wave motion 46, 108-121 (2009) · Zbl 1231.74090
[16] Duwairi, H. M.: On the non-isentropic sound waves propagation in a cylindrical tube filled with saturated porous media, Trans. porous media 79, 285-300 (2009)
[17] Eremeyev, V. A.: Acceleration waves in incompressible elastic media, Doklady phys. 50, 204-206 (2005)
[18] Eringen, A. C.: A continuum theory of swelling porous elastic soils, Int. J. Eng. sci. 32, 1337-1349 (1994) · Zbl 0899.73017
[19] Fabrizio, M.; Morro, A.: Electromagnetism of continuous media, (2003) · Zbl 1027.78001
[20] Fausti, P.; Pompoli, R.; Smith, R. S.: An intercomparison of laboratory measurements of airborne sound insulation of lightweight plasterboard walls, Build. acoust. 6, 127-140 (1999)
[21] Fellah, Z. E. A.; Depollier, C.: Transient acoustic wave propagation in rigid porous media: a time-domain approach, J. acoust. Soc. am. 107, 683-688 (2000) · Zbl 0993.74028
[22] Fellah, Z. E. A.; Depollier, C.; Berger, S.; Lauriks, W.; Trompette, P.; Chapelon, J. Y.: Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves, J. acoust. Soc. am. 114, 2561-2569 (2003)
[23] Fu, Y. B.; Scott, N. H.: The transistion from acceleration wave to shock wave, Int. J. Eng. sci. 29, 617-624 (1991) · Zbl 0734.73013
[24] Garai, M.; Pompoli, F.: A simple empirical model of polyester fibre materials for acoustical applications, Appl. acoust. 66, 1383-1398 (2005)
[25] Jordan, P. M.: Growth and decay of acoustic acceleration waves in Darcy-type porous media, Proc. roy. Soc. lond. A 461, 2749-2766 (2005) · Zbl 1186.76680
[26] Jordan, P. M.: Growth and decay of shock and acceleration waves in a traffic flow model with relaxation, Physica D 207, 220-229 (2005) · Zbl 1078.35073
[27] Jordan, P. M.: Finite amplitude acoustic travelling waves in a fluid that saturates a porous medium: acceleration wave formation, Phys. lett. A 355, 216-221 (2006)
[28] Jordan, P. M.: Growth, decay and bifurcation of shock amplitudes under the type-II flux law, Proc. roy. Soc. lond. A 463, 2783-2798 (2007) · Zbl 1132.35413
[29] Jordan, P. M.: On the growth and decay of transverse acceleration waves on a nonlinear, externally damped string, J. sound vib. 311, 597-607 (2008)
[30] Jordan, P. M.: Some remarks on nonlinear poroacoustic phenomena, Math. comp. Simul. 80 (2009) · Zbl 1422.76173
[31] Jordan, P. M.; Christov, C. I.: A simple finite difference scheme for modelling the finite-time blow-up of acoustic acceleration waves, J. sound vib. 281, 1207-1216 (2005) · Zbl 1236.76039
[32] Jordan, P. M.; Puri, A.: Growth/decay of transverse acceleration waves in nonlinear elastic media, Phys. lett. A 341, 427-434 (2005) · Zbl 1171.74321
[33] Jordan, P. M.; Straughan, B.: Acoustic acceleration waves in homentropic Green and naghdi gases, Proc. roy. Soc. lond. A 462, 3601-3611 (2006) · Zbl 1149.76663
[34] Jung, W.Y., 2008. A combined honeycomb and solid viscoelastic material for structural damping applications. <http://www.mceer.buffalo.edu/publications/resaccom/02-SP09/pdf_screen/08_Jung.pdf>.
[35] Lakes, R.S., 2008. Negative Poisson’s ratio materials. <http://www.silver.neep.wisc.edu/ lakes/Poisson.html>.
[36] Marasco, A.: On the first-order speeds in any directions of acceleration waves in prestressed second-order isotropic, compressible, and homogeneous materials, Math. comp. Model. 49, 1644-1652 (2009) · Zbl 1165.74305
[37] Marasco, A.; Romano, A.: On the acceleration waves in second-order elastic, isotropic, compressible, and homogeneous materials, Math. comp. Model. 49, 1504-1518 (2009) · Zbl 1165.74333
[38] Maysenhölder, W., Berg, A., Leistner, P., 2004. Acoustic properties of aluminium foams – measurements and modelling. CFA/DAGA’04, Strasbourg, 22 – 25/03/2004. <http://www.ibp.fhg.de/ba/forschung/aluschaum/aluschaum.pdf>.
[39] Nield, D.; Bejan, A.: Convection in porous media, (2006) · Zbl 1256.76004
[40] Ouellette, J., 2004. Seeing with sound. Acoustic microscopy advances beyond failure analysis. American Institute of Physics Website. <http://www.aip.org/tip/INPHFA/vol-10/iss-3/p14.html>.
[41] Rajagopal, K. R.; Tao, L.: On the propagation of waves through porous solids, Int. J. Nonlinear mech. 40, 373-380 (2005) · Zbl 1349.76826
[42] Rajagopal, K.R., Truesdell, C., 1999. An Introduction to the Mechanics of Fluids. Birkhäuser, Basel. · Zbl 0942.76001
[43] Sakai, H.; Sato, S.; Pompoli, R.; Prodi, N.: Measurement of regional environmental noise by use of a PC-based system: an application to the noise near the airport gmarconi in Bologna, J. sound vib. 241, 57-68 (2001)
[44] Scarpa, F.; Tomlinson, G.: Theoretical characteristics of the vibration of sandwich plates with in-plane negative Poisson’s ratio values, J. sound vib. 230, 45-67 (2000) · Zbl 1235.74117
[45] Schwingshackl, C. W.; Aglietti, G. S.; Cunningham, P. R.: Determination of honeycomb material properties: existing theories and alternative dynamic approach, J. aerospace eng. 19, 177-183 (2006)
[46] Straughan, B., 2004. The energy method, stability and nonlinear convection, second ed., vol. 91. Springer, New York. · Zbl 1032.76001
[47] Tyvand, P. A.; Storesletten, L.: Onset of convection in an anisotropic porous medium with oblique principal axes, J. fluid mech. 226, 371-382 (1991) · Zbl 0718.76100
[48] Vasilevich, V.V., Alexandrovich, R.B., 2008. Glass – fibre-reinforced honeycomb materials. <http://www.technologiya.ru/tech/materiale/t0102.html>.
[49] Wilmanski, K.: Tortuosity and objective relative accelerations in the theory of porous materials proc, Roy. soc. Lond. A 461, 1533-1561 (2005) · Zbl 1145.74344
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.