Liu, Qihuai; Qian, Dingbian Modulated amplitude waves with nonzero phases in Bose-Einstein condensates. (English) Zbl 1272.82025 J. Math. Phys. 52, No. 8, 082702, 11 p. (2011). Summary: In this paper we give a frame for application of the averaging method to Bose-Einstein condensates (BECs) and obtain an abstract result upon the dynamics of BECs. Using the averaging method, we determine the location where the modulated amplitude waves (periodic or quasi-periodic) exist and obtain that all these modulated amplitude waves (periodic or quasi-periodic) form a foliation by varying the integration constant continuously. Compared with the previous work, modulated amplitude waves studied in this paper have nontrivial phases and this makes the problem become more difficult, since it involves some singularities. {©2011 American Institute of Physics} Cited in 9 Documents MSC: 82C22 Interacting particle systems in time-dependent statistical mechanics 35Q55 NLS equations (nonlinear Schrödinger equations) 35B10 Periodic solutions to PDEs 35B15 Almost and pseudo-almost periodic solutions to PDEs Keywords:averaging method PDF BibTeX XML Cite \textit{Q. Liu} and \textit{D. Qian}, J. Math. Phys. 52, No. 8, 082702, 11 p. (2011; Zbl 1272.82025) Full Text: DOI arXiv References: [1] DOI: 10.1126/science.269.5221.198 [2] DOI: 10.1103/PhysRevLett.75.3969 [3] DOI: 10.1038/nature747 [4] DOI: 10.1126/science.1071021 [5] DOI: 10.1103/PhysRevLett.83.5198 [6] DOI: 10.1103/PhysRevLett.82.2014 [7] DOI: 10.2991/jnmp.2008.15.s3.7 · Zbl 1362.35279 [8] DOI: 10.1007/s00332-008-9037-7 · Zbl 1361.34043 [9] DOI: 10.1063/1.1648243 [10] DOI: 10.1063/1.1578971 [11] DOI: 10.1103/PhysRevLett.97.234101 [12] DOI: 10.1016/S0167-2789(98)00172-9 · Zbl 0935.35150 [13] DOI: 10.1137/080742002 · Zbl 1183.82005 [14] DOI: 10.1002/cpa.3160460404 · Zbl 0791.35078 [15] DOI: 10.1016/S0167-2789(97)00245-5 · Zbl 0935.35149 [16] DOI: 10.1007/s00332-005-0723-4 · Zbl 1114.37048 [17] DOI: 10.1007/s00332-002-0474-4 · Zbl 1009.35078 [18] DOI: 10.1103/RevModPhys.71.463 [19] DOI: 10.1088/0953-4075/35/24/312 [20] DOI: 10.1103/PhysRevLett.89.210404 [21] DOI: 10.1103/PhysRevA.74.013619 [22] DOI: 10.1103/PhysRevA.72.061605 [23] DOI: 10.1016/j.physd.2007.02.012 · Zbl 1113.82040 [24] DOI: 10.3934/dcdss.2011.4.1299 · Zbl 1210.35239 [25] DOI: 10.1103/RevModPhys.83.247 [26] DOI: 10.1126/science.282.5394.1686 [27] DOI: 10.1126/science.283.5408.1706 [28] DOI: 10.1103/PhysRevLett.86.1402 [29] DOI: 10.1103/PhysRevLett.82.2022 [30] DOI: 10.1103/PhysRevLett.86.2353 [31] DOI: 10.1103/PhysRevE.69.047201 [32] DOI: 10.1063/1.1779991 · Zbl 1080.82017 [33] DOI: 10.1103/PhysRevE.74.036610 [34] DOI: 10.1016/j.physd.2004.05.002 · Zbl 1098.81881 [35] DOI: 10.1142/S0218127406015222 · Zbl 1115.82304 [36] DOI: 10.1137/040610611 · Zbl 1145.82309 [37] DOI: 10.1103/PhysRevA.70.053621 [38] DOI: 10.1103/PhysRevE.70.056617 [39] DOI: 10.1103/PhysRevE.63.066604 [40] Bogoliubov N. N., Asymptotic Methods in the Theory of Nonlinear Oscillations (1961) [41] Sanders J. A., Averaging Methods in Nonlinear Dynamical Systems (2007) · Zbl 1128.34001 [42] DOI: 10.1007/978-1-4612-1140-2 · Zbl 0515.34001 [43] DOI: 10.1063/1.47308 [44] DOI: 10.1103/PhysRevLett.85.86 [45] DOI: 10.1016/S0167-2789(01)00355-4 · Zbl 0996.35071 [46] Berglund N., Perturbation Theory of Dynamical Systems (2001) [47] DOI: 10.1103/PhysRevA.65.021602 [48] DOI: 10.1238/Physica.Topical.107a00027 [49] DOI: 10.1103/PhysRevE.59.6064 [50] DOI: 10.1016/S0167-2789(98)00123-7 · Zbl 0939.35177 [51] Bronski J. C., Dynamics of PDE 2 pp 335– (2005) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.