zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Information propagation in online social network based on human dynamics. (English) Zbl 1272.91111
Summary: We investigate the impact of human dynamics on the information propagation in online social networks. First, statistical properties of the human behavior are studied using the data from the “Sina Microblog”, which is one of the most popular online social networks in China. We find that human activity patterns are heterogeneous and bursty and are often described by a power-law interevent time distribution $P(\tau) \sim \tau^{-\alpha}$. Second, we proposed an extended Susceptible-Infected (SI) propagation model to incorporate bursty and limited attention. We unveil how bursty human behavior and limited attention affect the information propagation in online social networks. The result in this paper can be useful for optimizing or controlling information propagation in online social networks.
MSC:
91D30Social networks
68M11Internet topics
WorldCat.org
Full Text: DOI
References:
[1] Q. Yan, L. Wu, and L. Yi, “Research on the human dynamics in mobile communities based on social identity,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 672756, 13 pages, 2012. · doi:10.1155/2012/672756
[2] Y. P. Xiao, B. Wang, Y. B. Liu et al., “Analyzing, modeling, and simulation for human dynamics in social network,” Abstract and Applied Analysis, vol. 2012, Article ID 208791, 16 pages, 2012.
[3] Y. P. Xiao, B. Wang, B. Wu, Z. Yan, S. Jia, and Y. Liu, “A hybrid human dynamics model on analyzing hotspots in social networks,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 678286, 13 pages, 2012. · Zbl 1253.91159 · doi:10.1155/2012/678286
[4] Q. Yan and L. Wu, “Impact of bursty human activity patterns on the popularity of online content,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 872908, 11 pages, 2012. · doi:10.1155/2012/872908
[5] A. L. Barabási, “The origin of bursts and heavy tails in human dynamics,” Nature, vol. 435, no. 7039, pp. 207-211, 2005. · doi:10.1038/nature03459
[6] H. H. Jo, M. Karsai, J. Kertesz, and K. Kaski, “Circadian pattern and burstiness in mobile phone communication,” New Journal of Physics, vol. 14, Article ID 013055, 2012.
[7] A. Vazquez, J. G. Oliveira, Z. Dezso, K. I. Goh, I. Kondor, and A. L. Barabasi, “Modeling bursts and heavy tails in human dynamics,” Physical Review E, vol. 73, Article ID 036127, 2006.
[8] J. G. Oliveira and A. L. Barabási, “Human dynamics: Darwin and Einstein correspondence patterns,” Nature, vol. 437, no. 7063, p. 1251, 2005. · doi:10.1038/4371251a
[9] Z. D. Zhao, H. Xia, M. S. Shang, and T. Zhou, “Empirical analysis on the human dynamics of a large-scale short message communication system,” Chinese Physics Letters, vol. 28, no. 6, Article ID 068901, 2011. · doi:10.1088/0256-307X/28/6/068901
[10] W. Hong, X. P. Han, T. Zhou, and B. H. Wang, “Heavy-tailed statistics in short-message communication,” Chinese Physics Letters, vol. 26, Article ID 028902, 2009.
[11] Y. Wu, C. Zhou, J. Xiao, J. Kurths, and H. J. Schellnhuber, “Evidence for a bimodal distribution in human communication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 44, pp. 18803-18808, 1880.
[12] Y. Wu, Q. Ye, L. Li, and J. Xiao, “Power-law properties of human view and reply behavior in online society,” Mathematical Problems in Engineering, vol. 2012, Article ID 969087, 7 pages, 2012. · Zbl 1264.91098 · doi:10.1155/2012/969087
[13] B. Min, K. I. Goh, and A. Vazquez, “Spreading dynamics following bursty human activity patterns,” Physical Review E, vol. 83, no. 3, Article ID 036102, 2011. · doi:10.1103/PhysRevE.83.036102
[14] A. Vazquez, B. Racz, A. Lukacs, and A. L. Barabasi, “Impact of non-Poissonian activity patterns on spreading processes,” Physical Review Letters, vol. 98, Article ID 158702, 2007.
[15] L. Weng, A. Flammini, A. Vespignani, and F. Menczer, “Competition among memes in a world with limited attention,” Scientific Reports, vol. 2, article 335, 2012.
[16] Q. Yan, L. L. Yi, and L. R. Wu, “Human dynamic model co-driven by interest and social identity in the MicroBlog community,” Physica A, vol. 391, pp. 1540-1545, 2012.
[17] H. L. Dong, Z. D. Wang, and H. J. Gao, “Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts,” IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 3164-3173, 2012. · doi:10.1109/TSP.2012.2190599
[18] H. L. Dong, Z. D. Wang, D. W. C. Ho, and H. J. Gao, “Distributed H-infinity state estimation with stochastic parameters and nonlinearities through sensor networks: the finite-horizon case,” Automatica, vol. 48, no. 8, pp. 1575-1585, 2012. · Zbl 1267.93167 · doi:10.1016/j.automatica.2012.05.070
[19] A. Vazquez, “Polynomial growth in branching processes with diverging reproductive number,” Physical Review Letters, vol. 96, no. 3, Article ID 038702, 2006. · doi:10.1103/PhysRevLett.96.038702
[20] T. E. Harris, The Theory of Branching Processes, Springer, Berlin, Germany, 2002. · Zbl 1037.60001
[21] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York, NY, USA, 1967. · Zbl 0158.34902