×

Effects of dispersal for a logistic growth population in random environments. (English) Zbl 1272.92045

Summary: We study a stochastic logistic model with diffusion between two patches in this paper. Using the definition of stationary distribution, we discuss the effect of dispersal in detail. If the species are able to have nontrivial stationary distributions when the patches are isolated, then they continue to do so for small diffusion rates. In addition, we use some examples and numerical experiments to reflect that diffusions are capable of both stabilizing and destabilizing a given ecosystem.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
34C60 Qualitative investigation and simulation of ordinary differential equation models
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Skellam, J. G., Random dispersal in theoretical populations, Biometrika, 38, 196-218 (1951) · Zbl 0043.14401
[2] Hastings, A., Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates, Journal of Mathematical Biology, 16, 1, 49-55 (1982) · Zbl 0496.92010 · doi:10.1007/BF00275160
[3] Freedman, H. I.; Rai, B.; Waltman, P., Mathematical models of population interactions with dispersal. II. Differential survival in a change of habitat, Journal of Mathematical Analysis and Applications, 115, 1, 140-154 (1986) · Zbl 0588.92020 · doi:10.1016/0022-247X(86)90029-6
[4] Allen, L. J. S., Persistence, extinction, and critical patch number for island populations, Journal of Mathematical Biology, 24, 6, 617-625 (1987) · Zbl 0603.92019 · doi:10.1007/BF00275506
[5] Beretta, E.; Takeuchi, Y., Global stability of single-species diffusion Volterra models with continuous time delays, Bulletin of Mathematical Biology, 49, 4, 431-448 (1987) · Zbl 0627.92021 · doi:10.1016/S0092-8240(87)80005-8
[6] Beretta, E.; Takeuchi, Y., Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delay, SIAM Journal on Applied Mathematics, 48, 3, 627-651 (1988) · Zbl 0661.92018 · doi:10.1137/0148035
[7] Wang, W.; Chen, L., Global stability of a population dispersal in a two-patch environment, Dynamic Systems and Applications, 6, 2, 207-215 (1997) · Zbl 0892.92026
[8] Cui, J.; Takeuchi, Y.; Lin, Z., Permanence and extinction for dispersal population systems, Journal of Mathematical Analysis and Applications, 298, 1, 73-93 (2004) · Zbl 1073.34052 · doi:10.1016/j.jmaa.2004.02.059
[9] Takeuchi, Y., Cooperative systems theory and global stability of diffusion models, Acta Applicandae Mathematicae, 14, 1-2, 49-57 (1989) · Zbl 0665.92017 · doi:10.1007/BF00046673
[10] Levin, S. A., Dispersion and population interactions, The American Naturalist, 108, 960, 207-228 (1974) · doi:10.1086/282900
[11] Levin, S. A., Spatial patterning and the structure of ecological communities, Some Mathematical Questions in Biology. Some Mathematical Questions in Biology, Lectures on Mathematics in the Life Sciences, 8, 1-35 (1976), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0338.92017
[12] Freedman, H. I.; Takeuchi, Y., Global stability and predator dynamics in a model of prey dispersal in a patchy environment, Nonlinear Analysis. Theory, Methods & Applications, 13, 8, 993-1002 (1989) · Zbl 0685.92018 · doi:10.1016/0362-546X(89)90026-6
[13] Kuang, Y.; Takeuchi, Y., Predator-prey dynamics in models of prey dispersal in two-patch environments, Mathematical Biosciences, 120, 1, 77-98 (1994) · Zbl 0793.92014 · doi:10.1016/0025-5564(94)90038-8
[14] Takeuchi, Y., Diffusion-mediated persistence in two-species competition Lotka-Volterra model, Mathematical Biosciences, 95, 1, 65-83 (1989) · Zbl 0671.92022 · doi:10.1016/0025-5564(89)90052-7
[15] Li, J.; Yan, J., Permanence and extinction for a nonlinear diffusive predator-prey system, Nonlinear Analysis. Theory, Methods & Applications, 71, 1-2, 399-417 (2009) · Zbl 1173.34033 · doi:10.1016/j.na.2008.10.087
[16] Takeuchi, Y.; Lu, Z. Y., Permanence and global stability for competitive Lotka-Volterra diffusion systems, Nonlinear Analysis. Theory, Methods & Applications, 24, 1, 91-104 (1995) · Zbl 0823.34056 · doi:10.1016/0362-546X(94)E0024-B
[17] Gard, T. C., Persistence in stochastic food web models, Bulletin of Mathematical Biology, 46, 3, 357-370 (1984) · Zbl 0533.92028 · doi:10.1016/S0092-8240(84)80044-0
[18] Gard, T. C., Stability for multispecies population models in random environments, Nonlinear Analysis. Theory, Methods & Applications, 10, 12, 1411-1419 (1986) · Zbl 0598.92017 · doi:10.1016/0362-546X(86)90111-2
[19] May, R. M., Stability and Complexity in Model Ecosystems (1973), Princeton, NJ, USA: Princeton University, Princeton, NJ, USA
[20] Fan, M.; Wang, K., Study on harvested population with diffusional migration, Journal of Systems Science and Complexity, 14, 2, 139-148 (2001) · Zbl 0976.92023
[21] Zou, X.; Wang, K., The protection zone of biological population, Nonlinear Analysis. Real World Applications, 12, 2, 956-964 (2011) · Zbl 1203.92069 · doi:10.1016/j.nonrwa.2010.08.019
[22] Mao, X.; Marion, G.; Renshaw, E., Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Processes and Their Applications, 97, 1, 95-110 (2002) · Zbl 1058.60046 · doi:10.1016/S0304-4149(01)00126-0
[23] Arnold, L., Stochastic Differential Equations: Theory and Applications (1972), New York, NY, USA: John Wiley & Sons, New York, NY, USA
[24] Friedman, A., Stochastic Differential Equations and Applications. Vol. 2. Probability and Mathematical Statistics, 28 (1976), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0323.60057
[25] Hasminskiĭ, R. Z., Stochastic Stability of Differential Equations. Stochastic Stability of Differential Equations, Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7, xvi+344 (1980), Alphen aan den Rijn, The Netherlands: Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands · Zbl 0441.60060
[26] Ji, C.; Jiang, D.; Shi, N., A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, Journal of Mathematical Analysis and Applications, 377, 1, 435-440 (2011) · Zbl 1216.34040 · doi:10.1016/j.jmaa.2010.11.008
[27] Ji, C.; Jiang, D., Dynamics of a stochastic density dependent predator-prey system with Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applications, 381, 1, 441-453 (2011) · Zbl 1232.34072 · doi:10.1016/j.jmaa.2011.02.037
[28] Mao, X., Stationary distribution of stochastic population systems, Systems & Control Letters, 60, 6, 398-405 (2011) · Zbl 1387.60107 · doi:10.1016/j.sysconle.2011.02.013
[29] Gard, T. C., Introduction to Stochastic Differential Equations, 270 (1988), New York, NY, USA: Madison Avenue, New York, NY, USA · Zbl 0628.60064
[30] Strang, G., Linear Algebra and Its Applications (1988), Watkins, Minn, USA: Harcourt Brace, Watkins, Minn, USA
[31] Zhu, C.; Yin, G., Asymptotic properties of hybrid diffusion systems, SIAM Journal on Control and Optimization, 46, 4, 1155-1179 (2007) · Zbl 1140.93045 · doi:10.1137/060649343
[32] Pasquali, S., The stochastic logistic equation: stationary solutions and their stability, Rendiconti del Seminario Matematico della Università di Padova, 106, 165-183 (2001) · Zbl 1165.60328
[33] Higham, D. J., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43, 3, 525-546 (2001) · Zbl 0979.65007 · doi:10.1137/S0036144500378302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.