×

General solutions of fully fuzzy linear systems. (English) Zbl 1272.93061

Summary: We propose a method to approximate the solutions of fully fuzzy linear system (FFLS), the so-called general solutions. So, we firstly solve the 1-cut position of a system, then some unknown spreads are allocated to each row of an FFLS. Using this methodology, we obtain some general solutions which are placed in the well-known solution sets like the tolerable solution set (TSS) and the controllable solution set (CSS). Finally, we solve two examples in order to demonstrate the ability of the proposed method.

MSC:

93C05 Linear systems in control theory
93C42 Fuzzy control/observation systems

Software:

INTOPT_90

References:

[1] Friedman, M.; Ming, M.; Kandel, A., Fuzzy linear systems, Fuzzy Sets and Systems, 96, 2, 201-209 (1998) · Zbl 0929.15004 · doi:10.1016/S0165-0114(96)00270-9
[2] Ma, M.; Friedman, M.; Kandel, A., Duality in fuzzy linear systems, Fuzzy Sets and Systems, 109, 1, 55-58 (2000) · Zbl 0945.15002 · doi:10.1016/S0165-0114(98)00102-X
[3] Allahviranloo, T., Numerical methods for fuzzy system of linear equations, Applied Mathematics and Computation, 155, 2, 493-502 (2004) · Zbl 1067.65040 · doi:10.1016/S0096-3003(03)00793-8
[4] Allahviranloo, T., Successive over relaxation iterative method for fuzzy system of linear equations, Applied Mathematics and Computation, 162, 1, 189-196 (2005) · Zbl 1062.65037 · doi:10.1016/j.amc.2003.12.085
[5] Allahviranloo, T., The Adomian decomposition method for fuzzy system of linear equations, Applied Mathematics and Computation, 163, 2, 553-563 (2005) · Zbl 1069.65025 · doi:10.1016/j.amc.2004.02.020
[6] Allahviranloo, T.; Afshar Kermani, M., Solution of a fuzzy system of linear equation, Applied Mathematics and Computation, 175, 1, 519-531 (2006) · Zbl 1095.65036 · doi:10.1016/j.amc.2005.07.048
[7] Allahviranloo, T.; Ahmady, E.; Ahmady, N.; Alketaby, Kh. S., Block Jacobi two-stage method with Gauss-Seidel inner iterations for fuzzy system of linear equations, Applied Mathematics and Computation, 175, 2, 1217-1228 (2006) · Zbl 1093.65032 · doi:10.1016/j.amc.2005.08.047
[8] Allahviranloo, T., A comment on fuzzy linear systems, Fuzzy Sets and Systems, 140, 3, 559 (2003) · Zbl 1050.15003 · doi:10.1016/S0165-0114(03)00139-8
[9] Abbasbandy, S.; Ezzati, R.; Jafarian, A., LU decomposition method for solving fuzzy system of linear equations, Applied Mathematics and Computation, 172, 1, 633-643 (2006) · Zbl 1088.65023 · doi:10.1016/j.amc.2005.02.018
[10] Abbasbandy, S.; Jafarian, A., Steepest descent method for system of fuzzy linear equations, Applied Mathematics and Computation, 175, 1, 823-833 (2006) · Zbl 1088.65026 · doi:10.1016/j.amc.2005.07.036
[11] Allahviranloo, T.; Ghanbari, M., On the algebraic solution of fuzzy linear systems based on interval theory, Applied Mathematical Modelling, 36, 11, 5360-5379 (2012) · Zbl 1254.15032 · doi:10.1016/j.apm.2012.01.002
[12] Amrahov, E.; Askerzade, I. N., Strong solutions of the fuzzy linear systems, Computer Modeling in Engineering & Sciences, 76, 3-4, 207-216 (2011) · Zbl 1356.15013
[13] Asady, B.; Abbasbandy, S.; Alavi, M., Fuzzy general linear systems, Applied Mathematics and Computation, 169, 1, 34-40 (2005) · Zbl 1119.65325 · doi:10.1016/j.amc.2004.10.042
[14] Kearfott, R. B., Rigorous Global Search: Continuous Problems. Rigorous Global Search: Continuous Problems, Nonconvex Optimization and Its Applications, 13, xvi+262 (1996), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 0876.90082
[15] Ezzati, R., Solving fuzzy linear systems, Soft Comput, 15, 193-197 (2011) · Zbl 1242.65055 · doi:10.1007/s00500-009-0537-7
[16] Gasilov, N.; Amrahov, E.; Fatullayev, A. G.; Karakaş, H.; Akın, O., A geometric approach to solve fuzzy linear systems, Computer Modeling in Engineering & Sciences, 75, 3-4, 189-203 (2011) · Zbl 1356.65094
[17] Ghomashi, A.; Salahshour, S.; Hakimzadeh, H., Approximating solutions of fully fuzzy linear systems: a financial case study · Zbl 1306.15029
[18] Kumar, A.; Babbar, N.; Bansal, A., A new computational method to solve fully fuzzy linear systems for negative coefficient matrix, International Journal of Manufacturing Technology and Management, 25, 19-32 (2012) · doi:10.1504/IJMTM.2012.047716
[19] Kumar, N.; Bansal, A., A new approach for solving fully fuzzy linear systems, Advances in Fuzzy Systems, 2011 (2011) · Zbl 1236.15005 · doi:10.1155/2011/943161
[20] Wang, K.; Zheng, B., Inconsistent fuzzy linear systems, Applied Mathematics and Computation, 181, 2, 973-981 (2006) · Zbl 1122.15004 · doi:10.1016/j.amc.2006.02.019
[21] Wang, X.; Zhong, Z.; Ha, M., Iteration algorithms for solving a system of fuzzy linear equations, Fuzzy Sets and Systems, 119, 1, 121-128 (2001) · Zbl 0974.65035
[22] Zheng, B.; Wang, K., General fuzzy linear systems, Applied Mathematics and Computation, 181, 2, 1276-1286 (2006) · Zbl 1122.15005 · doi:10.1016/j.amc.2006.02.027
[23] Buckley, J. J.; Qu, Y., Solving systems of linear fuzzy equations, Fuzzy Sets and Systems, 43, 1, 33-43 (1991) · Zbl 0741.65023 · doi:10.1016/0165-0114(91)90019-M
[24] Buckley, J. J.; Qu, Y., Solving linear and quadratic fuzzy equations, Fuzzy Sets and Systems, 38, 1, 43-59 (1990) · Zbl 0713.04004 · doi:10.1016/0165-0114(90)90099-R
[25] Buckley, J. J.; Qu, Y., Solving fuzzy equations: a new solution concept, Fuzzy Sets and Systems, 39, 3, 291-301 (1991) · Zbl 0723.04005 · doi:10.1016/0165-0114(91)90099-C
[26] Muzzioli, S.; Reynaerts, H., Fuzzy linear systems of the form \(A_1 x + b_1 = A_2 x + b_2\), Fuzzy Sets and Systems, 157, 7, 939-951 (2006) · Zbl 1095.15004 · doi:10.1016/j.fss.2005.09.005
[27] Dehghan, M.; Hashemi, B., Iterative solution of fuzzy linear systems, Applied Mathematics and Computation, 175, 1, 645-674 (2006) · Zbl 1137.65336 · doi:10.1016/j.amc.2005.07.033
[28] Dehghan, M.; Hashemi, B.; Ghatee, M., Computational methods for solving fully fuzzy linear systems, Applied Mathematics and Computation, 179, 1, 328-343 (2006) · Zbl 1101.65040 · doi:10.1016/j.amc.2005.11.124
[29] Dehghan, M.; Hashemi, B.; Ghatee, M., Solution of the fully fuzzy linear systems using iterative techniques, Chaos, Solitons & Fractals, 34, 2, 316-336 (2007) · Zbl 1144.65021 · doi:10.1016/j.chaos.2006.03.085
[30] Allahviranloo, T.; Mikaeilvand, N., Non zero solutions of the fully fuzzy linear systems, Applied and Computational Mathematics, 10, 2, 271-282 (2011) · Zbl 1220.65034
[31] Vroman, A.; Deschrijver, G.; Kerre, E. E., A solution for systems of linear fuzzy equations in spite of the non-existence of a field of fuzzy numbers, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 13, 3, 321-335 (2005) · Zbl 1077.03033 · doi:10.1142/S0218488505003485
[32] Vroman, A.; Deschrijver, G.; Kerre, E. E., Solving systems of linear fuzzy equations by parametric functions—an improved algorithm, Fuzzy Sets and Systems, 158, 14, 1515-1534 (2007) · Zbl 1121.65026 · doi:10.1016/j.fss.2006.12.017
[33] Vroman, A.; Deschrijver, G.; Kerre, E. E., Solving systems of linear fuzzy equations by parametric functions, IEEE Transactions on Fuzzy Systems, 15, 370-384 (2007) · doi:10.1109/TFUZZ.2006.880009
[34] Allahviranloo, T.; Salahshour, S.; Khezerloo, M., Maximal- and minimal symmetric solutions of fully fuzzy linear systems, Journal of Computational and Applied Mathematics, 235, 16, 4652-4662 (2011) · Zbl 1220.65033 · doi:10.1016/j.cam.2010.05.009
[35] Dubois, D.; Prade, H., Fuzzy Sets and Systems: Theory and Applications. Fuzzy Sets and Systems: Theory and Applications, Mathematics in Science and Engineering, 144, xvii+393 (1980), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0444.94049
[36] Goetschel,, R.; Voxman, W., Elementary fuzzy calculus, Fuzzy Sets and Systems, 18, 1, 31-43 (1986) · Zbl 0626.26014 · doi:10.1016/0165-0114(86)90026-6
[37] Puri, M. L.; Ralescu, D. A., Fuzzy random variables, Journal of Mathematical Analysis and Applications, 114, 2, 409-422 (1986) · Zbl 0592.60004 · doi:10.1016/0022-247X(86)90093-4
[38] Zimmermann, H. J., Fuzzy Sets Theory and Applications (1985), Dorrecht, The Netherlands: Kluwer, Dorrecht, The Netherlands
[39] Allahviranloo, T.; Salahshour, S., Fuzzy symmetric solutions of fuzzy linear systems, Journal of Computational and Applied Mathematics, 235, 16, 4545-4553 (2011) · Zbl 1220.65032 · doi:10.1016/j.cam.2010.02.042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.