×

Delay-dependent stability criterion for discrete-time uncertain state-delayed systems employing saturation nonlinearities. (English) Zbl 1272.93088

Summary: A new criterion for the global asymptotic stability of a class of uncertain discrete-time state-delayed systems employing saturation nonlinearities is presented. The proposed criterion takes the form of a linear matrix inequality which is delay-dependent. Numerical examples are given to illustrate the applicability of the presented criterion.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93D20 Asymptotic stability in control theory
93C10 Nonlinear systems in control theory
93C55 Discrete-time control/observation systems

Software:

LMI toolbox
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ebert P.M., Mazo J.E., Taylor M.G.: Overflow oscillations in digital filters. Bell Syst. Tech. J. 48, 2999–3020 (1969) · doi:10.1002/j.1538-7305.1969.tb01202.x
[2] Mills W.L., Mullis C.T., Roberts R.A.: Digital filter realizations without overflow oscillations. IEEE Trans. Acoust. Speech Signal Process. 26, 334–338 (1978) · Zbl 0415.93040 · doi:10.1109/TASSP.1978.1163114
[3] Sandberg I.W.: The zero-input response of digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. 26, 911–915 (1979) · Zbl 0425.93045 · doi:10.1109/TCS.1979.1084587
[4] Erickson K.T., Michel A.N.: Stability analysis of fixed-point digital filters using computer generated Lyapunov functions–Part I: direct form and coupled form filters. IEEE Trans. Circuits Syst. 32, 113–132 (1985) · Zbl 0557.93056 · doi:10.1109/TCS.1985.1085676
[5] Ritzerfeld J.H.F.: A condition for the overflow stability of second-order digital filters that is satisfied by all scaled state-space structures using saturation. IEEE Trans. Circuits Syst. 36, 1049–1057 (1989) · doi:10.1109/31.192413
[6] Singh V.: A generalized approach for the absolute stability of discrete-time systems utilizing the saturation nonlinearity, based on passivity properties. IEEE Trans. Circuits Syst. 37, 444–447 (1990) · Zbl 0707.93052 · doi:10.1109/31.52740
[7] Singh V.: Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. 37, 814–818 (1990) · doi:10.1109/31.55040
[8] Bose T., Chen M.-Q.: Overflow oscillations in state-space digital filters. IEEE Trans. Circuits Syst. 38, 807–810 (1991) · doi:10.1109/31.135754
[9] Liu D., Michel A.N.: Asymptotic stability of discrete-time systems with saturation nonlinearities with applications to digital filters. IEEE Trans. Circuits Syst. I 39, 789–807 (1992) · Zbl 0776.93077
[10] Kar H., Singh V.: A new criterion for the overflow stability of second-order state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. I 45, 311–313 (1998) · doi:10.1109/81.662720
[11] Kar H., Singh V.: Stability analysis of discrete-time systems in a state-space realisation with partial state saturation nonlinearities. IEE Proc. Control Theory Appl. 150, 205–208 (2003) · doi:10.1049/ip-cta:20030208
[12] Ooba T.: On companion systems with state saturation nonlinearity. IEEE Trans. Circuits Syst. I 50, 1580–1584 (2003) · Zbl 1370.93200 · doi:10.1109/TCSI.2003.819808
[13] Ooba T.: Stability of linear discrete dynamics employing state saturation arithmetic. IEEE Trans. Automat. Control 48, 626–630 (2003) · Zbl 1364.93434 · doi:10.1109/TAC.2003.809792
[14] Kar H., Singh V.: Elimination of overflow oscillations in fixed-point state-space digital filters with saturation arithmetic: an LMI approach. IEEE Trans. Circuits Syst. II 51, 40–42 (2004) · doi:10.1109/TCSII.2003.821526
[15] Kar H., Singh V.: Elimination of overflow oscillations in digital filters employing saturation arithmetic. Digital Signal Process. 15, 536–544 (2005) · doi:10.1016/j.dsp.2005.02.001
[16] Singh V.: Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic: an LMI approach. Digital signal process. 16, 45–51 (2006) · doi:10.1016/j.dsp.2005.04.003
[17] Singh V.: Modified form of Liu-Michel’s criterion for global asymptotic stability of fixed-point state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. II 53, 1423–1425 (2006) · doi:10.1109/TCSII.2006.885395
[18] Kar H.: An LMI based criterion for the nonexistence of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. Digital Signal Process. 17, 685–689 (2007) · doi:10.1016/j.dsp.2006.11.003
[19] Chen S.-F.: Asymptotic stability of discrete-time systems with time-varying delay subject to saturation nonlinearities. Chaos Solit. Fract. 42, 1251–1257 (2009) · Zbl 1198.93193 · doi:10.1016/j.chaos.2009.03.026
[20] Kandanvli V.K.R., Kar H.: Robust stability of discrete-time state-delayed systems employing generalized overflow nonlinearities. Nonlinear Anal. Theory Meth. Appl. 69, 2780–2787 (2008) · Zbl 1147.93035 · doi:10.1016/j.na.2007.08.050
[21] Kandanvli V.K.R., Kar H.: Robust stability of discrete-time state-delayed systems with saturation nonlinearities: linear matrix inequality approach. Signal Process. 89, 161–173 (2009) · Zbl 1155.94325 · doi:10.1016/j.sigpro.2008.07.020
[22] Kandanvli V.K.R., Kar H.: An LMI condition for robust stability of discrete-time state-delayed systems using quantization/overflow nonlinearities. Signal Process. 89, 2092–2102 (2009) · Zbl 1169.94313 · doi:10.1016/j.sigpro.2009.04.024
[23] Ji X., Liu T., Sun Y., Su H.: Stability analysis and controller synthesis for discrete linear time-delay systems with state saturation nonlinearities. Int. J. Syst. Sci. 42, 397–406 (2011) · Zbl 1209.93128 · doi:10.1080/00207720903572406
[24] Xu S., Lam J., Yang C.: Quadratic stability and stabilization of uncertain linear discrete-time systems with state delay. Syst. Control Lett. 43, 77–84 (2001) · Zbl 0974.93052 · doi:10.1016/S0167-6911(00)00113-4
[25] Xu S.: Robust H filtering for a class of discrete-time uncertain nonlinear systems with state delay. IEEE Trans. Circuits Syst. I 49, 1853–1859 (2002) · doi:10.1109/TCSI.2002.805736
[26] Xu S., Lam J., Chen T.: Robust H control for uncertain discrete stochastic time-delay systems. Syst. Control Lett. 51, 203–215 (2004) · Zbl 1157.93372 · doi:10.1016/j.sysconle.2003.08.004
[27] Lu G., Ho D.W.C.: Robust H observer for nonlinear discrete systems with time delay and parameter uncertainties. IEE Proc. Control Theory Appl. 151, 439–444 (2004) · doi:10.1049/ip-cta:20040490
[28] Palhares R.M., de Souza C.E., Peres P.L.D.: Robust H filtering for uncertain discrete-time state-delayed systems. IEEE Trans. Signal Process. 49, 1696–1703 (2001) · Zbl 1369.93641 · doi:10.1109/78.934139
[29] Chen W.-H., Guan Z.-H., Lu X.: Delay-dependent guaranteed cost control for uncertain discrete-time systems with both state and input delays. J. Franklin Inst. 341, 419–430 (2004) · Zbl 1055.93054 · doi:10.1016/j.jfranklin.2004.04.003
[30] Guan X., Lin Z., Duan G.: Robust guaranteed cost control for discrete-time uncertain systems with delay. IEE Proc. Control Theory Appl. 146, 598–602 (1999) · doi:10.1049/ip-cta:19990714
[31] Bakule L., Rodellar J., Rossell J.M.: Robust overlapping guaranteed cost control of uncertain state-delay discrete-time systems. IEEE Trans. Automat. Control 51, 1943–1950 (2006) · Zbl 1366.93007 · doi:10.1109/TAC.2006.886536
[32] Chen W.-H., Guan Z.-H., Lu X.: Delay-dependent guaranteed cost control for uncertain discrete-time systems with delay. IEE Proc. Control Theory Appl. 150, 412–416 (2003) · doi:10.1049/ip-cta:20030572
[33] Kim J.H., Ahn S.J., Ahn S.: Guaranteed cost and H filtering for discrete-time polytopic uncertain systems with time delay. J. Franklin Inst. 342, 365–378 (2005) · Zbl 1146.93379 · doi:10.1016/j.jfranklin.2005.01.002
[34] Mahmoud M.S.: Robust control and filtering for time-delay systems. Marcel-Dekker, New York (2000) · Zbl 0969.93002
[35] Mahmoud M.S., Boukas El-K., Ismail A.: Robust adaptive control of uncertain discrete-time state-delay systems. Comp. Math. Appl. 55, 2887–2902 (2008) · Zbl 1142.93399 · doi:10.1016/j.camwa.2007.11.021
[36] Kau S.-W., Liu Y.-S., Hong L., Lee C.-H., Fang C.-H., Lee L.: A new LMI condition for robust stability of discrete-time uncertain systems. Systems Control Lett. 54, 1195–1203 (2005) · Zbl 1129.93482 · doi:10.1016/j.sysconle.2005.04.007
[37] Mahmoud M.S.: New results on robust control design of discrete-time uncertain systems. IEE Proc. Control Theory Appl. 152, 453–459 (2005) · doi:10.1049/ip-cta:20059046
[38] Xie L., Fu M., De Souza C.E.: H control and quadratic stabilization of systems with parameter uncertainty via output feedback. IEEE Trans. Automat. Control 37, 1253–1256 (1992) · Zbl 0764.93067 · doi:10.1109/9.151120
[39] Xu S., Lam J., Lin Z., Galkowski K.: Positive real control for uncertain two-dimensional systems. IEEE Trans. Circuits Syst. I 49, 1659–1666 (2002) · Zbl 1368.93193 · doi:10.1109/TCSI.2002.804531
[40] Gao H., Lam J., Wang C., Wang Y.: Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay. IEE Proc. Control Theory Appl. 151, 691–698 (2004) · doi:10.1049/ip-cta:20040822
[41] Gao H., Chen T.: New results on stability of discrete-time systems with time-varying state delay. IEEE Trans. Automat. Control 52, 328–334 (2007) · Zbl 1366.39011 · doi:10.1109/TAC.2006.890320
[42] Xu S., Chen T.: Robust H control for uncertain discrete-time systems with time-varying delays via exponential output feedback controllers. Syst. Control Lett. 51, 171–183 (2004) · Zbl 1157.93371 · doi:10.1016/j.sysconle.2003.08.002
[43] He Y., Liu G.-P., Rees D., Wu M.: H filtering for discrete-time systems with time-varying delay. Signal Process. 89, 275–282 (2009) · Zbl 1151.94369 · doi:10.1016/j.sigpro.2008.08.008
[44] Chen Y., Xue A., Zhou S., Lu R.: Delay-dependent robust control for uncertain stochastic time-delay systems. Circuits Syst. Signal Process. 27, 447–460 (2008) · Zbl 1179.93169 · doi:10.1007/s00034-008-9037-8
[45] Guan X., Chen C., Shi P.: On robust stability for uncertain time-delay systems: a polyhedral Lyapunov-Krasovskii approach. Circuits Syst. Signal Process. 24, 1–18 (2005) · Zbl 1090.34060 · doi:10.1007/s00034-004-3060-1
[46] Li H., Chen B., Zhou Q., Lin C.: A delay-dependent approach to robust H control for uncertain stochastic systems with state and input delays. Circuits Syst. Signal Process. 28, 169–183 (2009) · Zbl 1163.93017 · doi:10.1007/s00034-008-9075-2
[47] Mahmoud M.S., Al-Sunni F.M., Shi Y.: Switched discrete-time delay systems: delay-dependent analysis and synthesis. Circuits Syst. Signal Process. 28, 735–761 (2009) · Zbl 1175.93096 · doi:10.1007/s00034-009-9107-6
[48] Paszke W., Lam J., Galkowski K., Xu S., Lin Z.: Robust stability and stabilisation of 2D discrete state-delayed systems. Syst. Control Lett. 51, 277–291 (2004) · Zbl 1157.93472 · doi:10.1016/j.sysconle.2003.09.003
[49] He Y., Wu M., Liu G.-P., She J.-H.: Output feedback stabilization for a discrete-time system with a time-varying delay. IEEE Trans. Automat. Control 53, 2372–2377 (2008) · Zbl 1367.93507 · doi:10.1109/TAC.2008.2007522
[50] Zhang L., Shi P., Boukas E.-K.: H output-feedback control for switched linear discrete- time systems with time-varying delays. Int. J. Control 80, 1354–1365 (2007) · Zbl 1133.93316 · doi:10.1080/00207170701377113
[51] Xu S., Lam J.: A survey of linear matrix inequality techniques in stability analysis of delay systems. Int. J. Syst. Sci. 39, 1095–1113 (2008) · Zbl 1156.93382 · doi:10.1080/00207720802300370
[52] Luo Y., Zhang H.: Approximate optimal control for a class of nonlinear discrete-time systems with saturating actuators. Progress Nat. Sci. 18, 1023–1029 (2008) · doi:10.1016/j.pnsc.2008.03.006
[53] Liu W., Zhang H., Wang Z.: A novel truncated approximation based algorithm for state estimation of discrete-time Markov jump linear systems. Signal Process. 91, 702–712 (2011) · Zbl 1220.94019 · doi:10.1016/j.sigpro.2010.07.017
[54] Gahinet, P.; Nemirovski, A.; Laub, A.J.; Chilali, M.: LMI Control Toolbox-For use with Matlab. The MATH Works Inc., Natic (1995)
[55] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994) · Zbl 0816.93004
[56] Kandanvli V.K.R., Kar H.: Delay-dependent LMI condition for global asymptotic stability of discrete-time uncertain state-delayed system using quantization/overflow nonlinearities. Int. J. Robust Nonlinear Control. 21, 1611–1622 (2011) · Zbl 1227.93103 · doi:10.1002/rnc.1654
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.