×

zbMATH — the first resource for mathematics

RSK type correspondence of pictures and Littlewood-Richardson crystals. (English) Zbl 1273.05236
Summary: We present a Robinson-Schensted-Knuth type one-to-one correspondence between the set of pictures and the set of pairs of Littlewood-Richardson crystals.
MSC:
05E10 Combinatorial aspects of representation theory
17B37 Quantum groups (quantized enveloping algebras) and related deformations
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Michael Clausen and Friedrich Stötzer, Picture and Skew \((\)Reverse\()\) Plane Partitions , Lecture Note in Math. 969 Combinatorial Theory, 100-114. · Zbl 0517.20003
[2] Michael Clausen and Friedrich Stötzer, Pictures und Standardtableaux, Bayreuth. Math. Schr. 16 (1984), 1-122. · Zbl 0536.05014
[3] Sergey Fomin and Curtis Greene, A Littlewood-Richardson Miscellany, Europ. J. Combinatorics 14 (1993), 191-212. · Zbl 0796.05091
[4] W. Fulton, Young tableaux , London Mathematical Society Student Text 35 , Cambridge. · Zbl 0878.14034
[5] Jin. Hong and Seok-Jin Kang, Introduction to Quantum Groups and Crystal Bases , · Zbl 1134.17007
[6] American Mathematical Society G. D. James and M. H. Peel, Specht series for skew representations of symmetric groups, J. Algebra 56 (1979), 343-364. · Zbl 0398.20016
[7] M. Kashiwara, Crystallizing the \(q\)-analogue of universal enveloping algebras, Commun. Math. Phys. 133 (1990), 249-260. · Zbl 0724.17009
[8] M. Kashiwara, On crystal bases of the \(q\)-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516. · Zbl 0739.17005
[9] M. Kashiwara and T. Nakashima, Crystal graph for representations of the \(q\)-analogue of classical Lie algebras, J. Algebra 165 (1994), Number 2, 295-345. · Zbl 0808.17005
[10] T. Nakashima, Crystal Base and a Generalization of the Littlewood-Richardson Rule for the Classical Lie Algebras, Commun. Math. Phys. 154 (1993), 215-243. · Zbl 0795.17016
[11] T. Nakashima and M. Shimojo, Pictures and Littlewood-Richardson Crystals, Tokyo J. Math. 34 (2011), 493-506. · Zbl 1238.05279
[12] T. Nakashima and M. Shimojo, Admissible Pictures and Littlewood-Richardson Crystals, Commum. in Algebra 39 : 10 (2011), 3849-3865. · Zbl 1235.05148
[13] Marc A. A. van Leeuwen, Tableau algorithms defined naturally for pictures. Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994). Discrete Math. 157 (1996), no. 1-3, 321-362. · Zbl 0863.05080
[14] A. V. Zelevinsky, A Generalization of the Littlewood-Richardson Rule and the Robinson-Schensted-Knuth Correspondence, J. Algebra 69 (1981), 82-94. · Zbl 0464.20010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.