Takagi, Toshikazu The cuspidal class number formula for certain quotient curves of the modular curve \(X_0(M)\) by Atkin-Lehner involutions. (English) Zbl 1273.11095 J. Math. Soc. Japan 62, No. 1, 13-47 (2010). Summary: We calculate the cuspidal class number of a certain quotient curve of the modular curve \(X_{0}(M)\) with \(M\) square-free. For each factor \(r\) of \(M\), let \(w_{r}\) denote the Atkin-Lehner type involution of \(X_{0}(M)\). Let \(M_{0}\) be a divisor of \(M\), and \(W_{0}\) the subgroup of the automorphism group of \(X_{0}(M)\) consisting of all \(w_{r}\) with \(r\) dividing \(M_{0}\). Our object is the quotient of \(X_{0}(M)\) by \(W_{0}\). In this paper, we consider the case where \(M\) is odd. Cited in 1 Document MSC: 11G18 Arithmetic aspects of modular and Shimura varieties 11G16 Elliptic and modular units 14G35 Modular and Shimura varieties Keywords:modular curve; modular unit; cuspidal class number × Cite Format Result Cite Review PDF Full Text: DOI References: [1] A. O. L. Atkin and J. Lehner, Hecke Operators on \(\Gamma_{0}(m)\), Math. Ann., 185 (1970), 134-160. · Zbl 0177.34901 · doi:10.1007/BF01359701 [2] V. G. Drinfeld, Two theorems on modular curves, Funct. Anal. Appl., 7 (1973), 155-156. · Zbl 0285.14006 [3] S. Klimek, Thesis, Berkeley, 1975. [4] D. Kubert and S. Lang, The index of Stickelberger ideals of order 2 and cuspidal class numbers, Math. Ann., 237 (1978), 213-232. · Zbl 0371.12023 · doi:10.1007/BF01420177 [5] D. Kubert and S. Lang, Modular Units, Grundlehren der Mathematischen Wissenschaften, 244 , Springer-Verlag, Berlin, 1981. · Zbl 0492.12002 [6] J. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR, Ser. Mat., 36 (1972), AMS translation 19-64. · Zbl 0243.14008 [7] A. Ogg, Rational points on certain elliptic modular curves, AMS Conference, St. Louis, 1972, pp. 211-231. · Zbl 0273.14008 [8] A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France, 102 (1974), 449-462. · Zbl 0314.10018 [9] T. Takagi, Cuspidal class number formula for the modular curves \(X_{1}(p)\), J. Algebra, 151 (1992), 348-374. · Zbl 0773.11040 · doi:10.1016/0021-8693(92)90119-7 [10] T. Takagi, The cuspidal class number formula for the modular curves \(X_{1}(p^{m})\), J. Algebra, 158 (1993), 515-549. · Zbl 0811.11045 · doi:10.1006/jabr.1993.1142 [11] T. Takagi, The cuspidal class number formula for the modular curves \(X_{1}(3^{m})\), J. Math. Soc. Japan, 47 (1995), 671-686. · Zbl 0888.11022 · doi:10.2969/jmsj/04740671 [12] T. Takagi, The cuspidal class number formula for the modular curves \(X_{0}(M)\) with \(M\) square-free, J. Algebra, 193 (1997), 180-213. · Zbl 0888.11021 · doi:10.1006/jabr.1996.6993 [13] T. Takagi, The cuspidal class number formula for the modular curves \(X_{1}(2^{2n+1})\), J. Algebra, 319 (2008), 3535-3566. · Zbl 1155.11031 · doi:10.1016/j.jalgebra.2007.11.035 [14] J. Yu, A cuspidal class number formula for the modular curves \(X_{1}(N)\), Math. Ann., 252 (1980), 197-216. · Zbl 0426.12003 · doi:10.1007/BF01420083 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.