Karpenkov, Oleg Multidimensional Gauss reduction theory for conjugacy classes of \(\mathrm{SL}(n,\mathbb Z)\). (English. French summary) Zbl 1273.11111 J. Théor. Nombres Bordx. 25, No. 1, 99-109 (2013). The author describes the set of conjugacy classes in the group \(mathrm{SL}(n,\mathbb{Z})\). He expands geometric Gauss Reduction Theory that solves the problem for \(mathrm{SL}(n,\mathbb{Z})\) to the multidimensional case, where \(\zeta\)-reduced Hessenberg matrices play the role of reduced matrices. He also describes complete invariants of conjugacy classes in \(mathrm{SL}(n,\mathbb{Z})\) in terms of multidimensional Klein-Voronoi continued fractions. Reviewer: Alexey Ustinov (Khabarovsk) MSC: 11J70 Continued fractions and generalizations 11A55 Continued fractions Keywords:special linear group; Gauss reduction theory; multidimensional continued fraction PDF BibTeX XML Cite \textit{O. Karpenkov}, J. Théor. Nombres Bordx. 25, No. 1, 99--109 (2013; Zbl 1273.11111) Full Text: DOI Link arXiv References: [1] H. Appelgate and H. Onishi, The similarity problem for \(3× 3\) integer matrices. Linear Algebra Appl. 42 (1982), 159-174. · Zbl 0484.15011 [2] V. I. Arnold, Continued fractions (In Russian). Moscow Center of Continuous Mathematical Education, Moscow, 2002. [3] J. Buchmann, A generalization of Voronoĭ’s unit algorithm. I. J. Number Theory 20(2) (1985), 177-191. · Zbl 0575.12005 [4] J. Buchmann, A generalization of Voronoĭ’s unit algorithm. II. J. Number Theory 20(2) (1985), 192-209. · Zbl 0575.12005 [5] F. J. Grunewald, Solution of the conjugacy problem in certain arithmetic groups. Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), 95 of Stud. Logic Foundations Math., North-Holland, Amsterdam, 1980, 101-139. · Zbl 0447.20031 [6] O. Karpenkov, On the triangulations of tori associated with two-dimensional continued fractions of cubic irrationalities. Funct. Anal. Appl. 38(2) (2004), 102-110. Russian version: Funkt. Anal. Prilozh. 38(2) (2004), 28-37. · Zbl 1125.11042 [7] O. Karpenkov, On Asymptotic Reducibility in \({S}{L}(3,\mathbb{Z})\). Technical report, arXiv:1205.4166, (2012). [8] S. Katok, Continued fractions, hyperbolic geometry and quadratic forms. In MASS selecta, Amer. Math. Soc., Providence, RI, 2003, 121-160. · Zbl 1091.11002 [9] F. Klein, Über eine geometrische Auffassung der gewöhnliche Kettenbruchentwicklung. Nachr. Ges. Wiss. Göttingen, Math-phys. Kl., 3:352-357, 1895. [10] E. I. Korkina, The simplest \(2\)-dimensional continued fraction. Topology, 3. J. Math. Sci. 82(5) (1996), 3680-3685. · Zbl 0901.11003 [11] G. Lachaud, Voiles et polyhedres de Klein. Act. Sci. Ind., Hermann, 2002. [12] Y. I. Manin and M. Marcolli, Continued fractions, modular symbols, and noncommutative geometry. Selecta Math. (N.S.), 8(3) (2002), 475-521. · Zbl 1116.11033 [13] G. F. Voronoĭ, Algorithm of the generalized continued fraction (In Russian). In Collected works in three volumes, volume I. USSR Ac. Sci., Kiev, 1952. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.