×

zbMATH — the first resource for mathematics

Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras. I: Type \(B_r\). (English) Zbl 1273.13041
In the paper under review, the authors prove the periodicities of the restricted T-systems and Y-systems associated with the quantum affine algebra of type \(B_r\) at any level. They also prove the dilogarithm identities for the Y-systems of type \(B_r\) at any level. Their proof is based on the tropical Y-systems and the categorification of the cluster algebra associated with any skew-symmetric matrix by P.-G. Plamondon [Adv. Math. 227, No. 1, 1–39 (2011; Zbl 1288.13016)]. Using this new method, they also give an alternative and simplified proof of the periodicities of the T-systems and Y-systems associated with pairs of simply laced Dynkin diagrams.

MSC:
13F60 Cluster algebras
17B37 Quantum groups (quantized enveloping algebras) and related deformations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with poten- tial, Ann. Inst. Fourier (Grenoble) 59 (2009), 2525-2590. · Zbl 1239.16011
[2] R. Caracciolo, F. Gliozzi and R. Tateo, A topological invariant of RG flows in 2D integrable quantum field theories, Int. J. Modern Phys. 13 (1999), 2927-2932. · Zbl 1229.81194
[3] F. Chapoton, Functional identities for the Rogers dilogarithm associated to cluster Y- systems, Bull. London Math. Soc. 37 (2005), 755-760. · Zbl 1134.33303
[4] R. Dehy and B. Keller, On the combinatorics of rigid objects in 2-Calabi-Yau categories, Int. Math. Res. Notices 2008, rnn029, 17 pp. · Zbl 1144.18009
[5] H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their represen- tations I: Mutations, Selecta Math. 14 (2008), 59-119. · Zbl 1204.16008
[6] , Quivers with potentials and their representations II: Applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), 749-790. · Zbl 1208.16017
[7] P. Di Francesco and R. Kedem, Q-systems as cluster algebras II: Cartan matrix of finite type and the polynomial property, Lett. Math. Phys. 89 (2009), 183-216. · Zbl 1195.81077
[8] S. Fomin and A. Zelevinsky, Cluster algebras II. Finite type classification, Invent. Math. 154 (2003), 63-121. · Zbl 1054.17024
[9] , Y-systems and generalized associahedra, Ann. of Math. 158 (2003), 977-1018. · Zbl 1057.52003
[10] , Cluster algebras IV. Coefficients, Compos. Math. 143 (2007), 112-164. · Zbl 1127.16023
[11] E. Frenkel and A. Szenes, Thermodynamic Bethe ansatz and dilogarithm identities. I, Math. Res. Lett. 2 (1995), 677-693. · Zbl 1036.11514
[12] C. Fu and B. Keller, On cluster algebras with coefficients and 2-Calabi-Yau categories, Trans. Amer. Math. Soc. 362 (2010), 859-895. · Zbl 1201.18007
[13] F. Gliozzi and R. Tateo, ADE functional dilogarithm identities and integrable models, Phys. Lett. B 348 (1995), 84-88.
[14] D. Hernandez, The Kirillov-Reshetikhin conjecture and solutions of T-systems, J. Reine Angew. Math. 596 (2006), 63-87. · Zbl 1160.17010
[15] , Drinfeld coproduct, quantum fusion tensor category and applications, Proc. London Math. Soc. 95 (2007), 567-608. · Zbl 1133.17010
[16] D. Hernandez and B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010) 265-341. · Zbl 1284.17010
[17] H. C. Hutchins and H. J. Weinert, Homomorphisms and kernels of semifields, Period. Math. Hungar. 21 (1990), 113-152. · Zbl 0718.16041
[18] R. Inoue, O. Iyama, B. Keller, A. Kuniba and T. Nakanishi, Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras II: Types Cr, F4, and G2, Publ. RIMS Kyoto Univ. 49 (2013), 43-85. · Zbl 1283.13021
[19] R. Inoue, O. Iyama, A. Kuniba, T. Nakanishi and J. Suzuki, Periodicities of T-systems and Y-systems, Nagoya Math. J. 197 (2010), 59-174. · Zbl 1250.17024
[20] B. Keller, Cluster algebras, quiver representations and triangulated categories, in Tri- angulated categories, T. Holm et al. (eds.), London Math. Soc. Lecture Note Ser. 375, Cambridge Univ. Press, 2010, 76-160. · Zbl 1215.16012
[21] , The periodicity conjecture for pairs of Dynkin diagrams, arXiv:1001.1531. · Zbl 1320.17007
[22] B. Keller and D. Yang, Derived equivalences from mutations of quivers with potential, Adv. Math. 226 (2011), 2118-2168. · Zbl 1272.13021
[23] A. N. Kirillov, Identities for the Rogers dilogarithm function connected with simple Lie algebras, J. Soviet Math. 47 (1989), 2450-2458. · Zbl 0685.33014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.