×

zbMATH — the first resource for mathematics

Simple meromorphic functions are algebraic. (English) Zbl 1273.32038
Summary: We exhibit a class of meromorphic functions in two variables conjugated to algebraic functions using the geometry of the foliation by level curves.

MSC:
32S65 Singularities of holomorphic vector fields and foliations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Calsamiglia-Mendlewicz, G, finite determinacy of dicritical singularities in (ℂ\^{}{2}, 0), Ann. Inst. Fourier, 57, 673-691, (2007) · Zbl 1135.32033
[2] C. Camacho and H. Movasati. Neighborhoods of analytic varieties, volume 35 of Monografas del Instituto de Matematica y Ciencias Afines IMCA, Lima (2003). · Zbl 1243.32006
[3] D. Cerveau and J.-F. Mattei. Formes intégrables holomorphes singulières. Astérisque, 97 (1982), 193 pp. · Zbl 0135.12601
[4] J. Drach. L’équation différentielle de la balistique extérieur et son intégration par quadratures. Ann. Sci. École Normale Sup., 37 (1920), 1-94. · JFM 47.0725.01
[5] Fischer, W; Grauert, H, Lokal-triviale familien kompakter komplexer mannigfaltigkeiten, 89-94, (1965) · Zbl 0135.12601
[6] Genzmer, Y; Teyssier, L, Existence of non-algebraic singularities of differential equation, J. Differential Equations, 248, 1256-1267, (2010) · Zbl 1192.34047
[7] Gomez-Mont, X, Integrals for holomorphic foliations with singularities having all leaves compact, Ann. Inst. Fourier, 39, 451-458, (1989) · Zbl 0667.58052
[8] H. Grauert. Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann., 146 (1962), 331-368. · Zbl 0173.33004
[9] G. Heilbronn. Intégration des équations différentielles ordinaires par la méthode de Drach. Mémoire. Sci. Math., no. 133 Gauthier-Villars, Paris (1956), 103 pp. · Zbl 0071.29801
[10] M. Klughertz. Feuilletages holomorphes à singularité isolée ayant une infinité de courbes intégrales. Ph.D Thesis Université Toulouse III (1988).
[11] M. Klughertz. Existence d’une intégrale première méromorphe pour des germes de feuilletages à feuilles fermées du plan complexe. Topology, 31 (1992), 255-269. · Zbl 0776.57014
[12] F. Loray. Analytic normal forms for non degenerate singularities of planar vector fields, preprint CRM Barcelona, 545 (2003), http://www.crm.es/Publications/03/pr545.pdf.
[13] Mather, JN; Yau, ST, Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math., 69, 243-251, (1982) · Zbl 0499.32008
[14] R. Meziani and P. Sad. Singularités nilpotentes et intégrales premières, preprint IMPA, A415 (2005), http://www.preprint.impa.br/Shadows/SERIE_A/2005/415.html. · Zbl 1192.34047
[15] Ortiz-Bobadilla, L; Rosales-Gonzalez, E; Voronin, SM, rigidity theorems for generic holomorphic germs of dicritic foliations and vector fields in (ℂ\^{}{2}, 0), Moscow Math. J., 5, 171-206, (2005) · Zbl 1091.32012
[16] M. Susuki. Sur les intégrales premières de certains feuilletages analytiques complexes. Fonct. de plusieurs variables complexes, sémin. Francois Norguet, Lect. Notes Math., 670 (1978), 53-79.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.