zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Characterization of Lie multiplicative isomorphisms between nest algebras. (English) Zbl 1273.47123
Let $\mathcal {A}$ and $\mathcal {A}^{\prime }$ be two algebras. A map $\Phi :\mathcal {A}\to \mathcal {A}^{\prime }$ is called a Lie multiplicative map if $\Phi ([A, B])=[\Phi (A), B]+[A, \Phi (B)]$ for any $A, B\in \mathcal {A}$, where $[A, B]=AB-BA$ is the usual Lie product. Moreover, if $\Phi $ is both bijective and linear additionally, then $\Phi $ is called a Lie isomorphism. This paper is devoted to the characterization of Lie multiplicative maps on nest algebras. Let ${\text{Alg}}\mathcal{N}$ and $\text{Alg}\mathcal{M}$ be two nest algebras, where $\mathcal{N}$ and $\mathcal{M}$ are nests in Banach spaces $X$ and $Y$ over the real or complex field $\mathbb{F}$, respectively, with the property that, if $M \in \mathcal{M}$ such that $M _{ - } = M$, then $M$ is complemented in $Y$. Assume that there is a nontrivial element in $\mathcal{N}$ which is complemented in $X$ and $\Phi :\text{Alg}\mathcal{N} \to \text{Alg}\mathcal{M}$ is a bijective map. Then $\Phi $ is Lie multiplicative if and only if $\Phi $ is of the form $\Psi +\tau $, where $\Psi :\text{Alg}\mathcal{N} \to \text{Alg}\mathcal{M}$ is a ring isomorphism or the negative of a ring anti-isomorphism and $\tau:\mathrm{Alg}\mathcal {N}\to \mathbb {F}I$ is a map satisfying $\tau ([A, B])=0$ for all $A, B\in\mathrm{Alg}\mathcal {N}$.

MSC:
47L35Nest algebras, CSL algebras
16W10Associative rings with involution, etc.
WorldCat.org
Full Text: DOI
References:
[1] Bai Z F, Du S P, Hou J C. Multiplicative Lie isomorphisms between prime rings. Comm Algebra, 2008, 36: 1626--1633 · Zbl 1145.16013 · doi:10.1080/00927870701870475
[2] Beidar K I, Bresar M, Chebotar M A, et al. On Herstein’s Lie map conjectures (I). Trans Amer Math Soc, 2001, 353: 4235--4260 · Zbl 1019.16019 · doi:10.1090/S0002-9947-01-02731-3
[3] Beidar K I, Bresar M, Chebotar M A, et al. On Herstein’s Lie map conjectures (III). J Algebra, 2002, 249: 59--94 · Zbl 1019.16021 · doi:10.1006/jabr.2001.9076
[4] Beidar K I, Martindale III W S, Mikhalev A V. Lie isomorphisms in prime rings with involution. J Algebra, 1994, 169: 304--327 · Zbl 0813.16020 · doi:10.1006/jabr.1994.1286
[5] Berenguer M I, Villena A R. Continuity of Lie isomorphisms of Banach algebras. Bull London Math Soc, 1999, 31: 6--10 · Zbl 1068.46500 · doi:10.1112/S0024609398005128
[6] Bresar M. Commuting traces of biadditive mappings, commutativity preserving mappings, and Lie mappings. Trans Amer Math Soc, 1993, 335: 525--546 · Zbl 0791.16028
[7] Davidson K R. Nest Algebras. Pitman Research Notes in Mathematics, vol. 191. London-New York: Longman, 1988
[8] Hou J C, Zhang X L. Ring isomorphisms and linear or additive maps preserving zero products on nest algebras. Linear Algebra Appl, 2004, 387: 343--360 · Zbl 1061.47035 · doi:10.1016/j.laa.2004.02.032
[9] Marcoux L W, Sourour A R. Lie isomorphisms of nest algebras. J Funct Anal, 1999, 164: 163--180 · Zbl 0940.47061 · doi:10.1006/jfan.1999.3388
[10] Martindale III W S. Lie isomorphisms of prime rings. Trans Amer Math Soc, 1969, 142: 437--455 · Zbl 0192.37802 · doi:10.1090/S0002-9947-1969-0251077-5
[11] Martindale III W S. Lie isomorphisms of simple rings. J London Math Soc, 1969, 44: 213--221 · Zbl 0164.03901
[12] Qi X F, Hou J C. Additivity of Lie multiplicative maps on triangular algebras. Linear Multilinear Algebra, in press · Zbl 1216.47112
[13] Radjavi H, Rosenthal P. Invariant Subspaces. Berline-Heidelberg-New York: Springer-Verlag, 1973 · Zbl 0269.47003