×

zbMATH — the first resource for mathematics

On decomposable almost pseudo conharmonically symmetric manifolds. (English) Zbl 1273.53010
Summary: The object of the present paper is to study decomposable almost pseudo conharmonically symmetric manifolds.
Reviewer: Reviewer (Berlin)

MSC:
53B20 Local Riemannian geometry
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C20 Global Riemannian geometry, including pinching
PDF BibTeX XML Cite
Full Text: Link
References:
[1] Abussattar, D. B.: On conharmonic transformations in general relativity. Bulletin of the Calcutta Mathematical Society 41 (1966), 409-416.
[2] Adati, T., Miyazawa, T.: On Riemannian space with recurrent conformal curvature. Tensor, N.S. 18 (1967), 348-354. · Zbl 0152.39103
[3] Chaki, M. C.: On pseudo symmetric manifolds. Analele Stiint, Univ. AI-I. Cuza 33 (1987), 53-58. · Zbl 0634.53012
[4] Chaki, M. C., Gupta, B.: On conformally symmetric spaces. Indian J. Math. 5 (1963), 113-122. · Zbl 0122.39902
[5] De, U. C., Biswas, H. A.: On pseudo-conformally symmetric manifolds. Bull. Calcutta Math. Soc. 85, 5 (1993), 479-486. · Zbl 0821.53018
[6] De, U. C., Gazi, A. K.: On almost pseudo symmetric manifolds. Ann. Univ. Sci., Budapest. Eötvös, Sect. Math. 51 (2008), 53-68. · Zbl 1224.53056
[7] De, U. C., Gazi, A. K.: On almost pseudo conformally symmetric manifolds. Demonstratio Math. 42, 4 (2009), 861-878. · Zbl 1184.53034
[8] Deszcz, R.: On pseudo symmetric spaces. Bull. Belg. Math. Soc., Serie A 44 (1992), 1-34. · Zbl 0808.53012
[9] Ficken, F. A.: The Riemannian and affine differential geometry of product spaces. Annals of Math. 40 (1939), 892-913. · Zbl 0023.37701 · doi:10.2307/1968900
[10] Ghosh, S., De, U. C., Taleshian, A.: Conharmonic curvature tensor on \(N(K)\)-contact metric manifolds. International Scholarly Research Network, ISRN Geometry, doi: 10.5402/2011/423798. · Zbl 1226.53029 · doi:10.5402/2011/423798
[11] Ishii, Y.: On conharmonic transformations. Tensor, N.S. 7 (1957), 73-80. · Zbl 0079.15702
[12] Mikeš, J.: Projective-symmetric and projective-recurrent affinely connected spaces. Tr. Geom. Semin. 13 (1981), 61-62 · Zbl 0502.53016 · eudml:72389
[13] Mikeš, J.: Geodesic mappings of special Riemannian spaces. Colloq. Math. Soc. Janos Bolyai 46 (1988), 793-813
[14] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78 (1996), 311-333. · Zbl 0866.53028 · doi:10.1007/BF02365193
[15] Rachůnek, L., Mikeš, J.: On tensor fields semiconjugated with torse-forming vector fields. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 44 (2005), 151-160. · Zbl 1092.53016
[16] Schouten, J. A.: Ricci Calculus. Spinger, Berlin, 1954. · Zbl 0057.37803 · doi:10.1007/978-3-662-12927-2
[17] Shaikh, A. A., Hui, S. K.: On weakly conharmonically symmetric manifolds. Tensor, N.S. 70 (2008), 119-134. · Zbl 1193.53115
[18] Siddiqui, S. A., Ahsan, Z.: Conharmonic curvature tensor and the space-time general relativity. Differential Geometry, Dynamical Systems 12 (2010), 213-220. · Zbl 1202.83015
[19] Soos, G.: Über die geodätischen Abbildungen von Riemannschen Räumen auf projektivsymmetrische Riemannsche Räume. Acta Math. Acad. Sci. Hungar. 9 (1958), 359-361. · Zbl 0085.36903 · doi:10.1007/BF02020266
[20] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. Colloq. Math. Soc. J. Bolyai, Differential geometry and its applications (Eger, 1989) 56 (1992), 663-670. · Zbl 0791.53021
[21] Walker, A. G.: On Ruse’s spaces of recurrent curvature. Proc. London Math. Soc. 52, 2 (1950), 36-64. · Zbl 0039.17702 · doi:10.1112/plms/s2-52.1.36
[22] Yano, K.: On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo 20 (1944), 340-345. · Zbl 0060.39102 · doi:10.3792/pia/1195572958
[23] Yano, K., Kon, M.: Structure on Manifolds. World Scientific, Singapore, 1986.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.