×

On fixed point theory of monotone mappings with respect to a partial order introduced by a vector functional in cone metric spaces. (English) Zbl 1273.54064

Summary: We presented some maximal and minimal fixed point theorems of set-valued monotone mappings with respect to a partial order introduced by a vector functional in cone metric spaces. In addition, we proved not only the existence of maximal and minimal fixed points but also the existence of the largest and the least fixed points of single-valued increasing mappings. It is worth mentioning that the results on single-valued mappings in this paper are still new even in the case of metric spaces and hence they indeed improve the recent results.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
54C60 Set-valued maps in general topology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agarwal, R. P.; Khamsi, M. A., Extension of Caristi’s fixed point theorem to vector valued metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 74, 1, 141-145 (2011) · Zbl 1231.54017
[2] Caristi, J., Fixed point theorems for mappings satisfying inwardness conditions, Transactions of the American Mathematical Society, 215, 241-251 (1976) · Zbl 0305.47029
[3] Cho, S. H.; Bae, J. S.; Na, K. S., Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings in cone metric spaces, Fixed Point Theory and Applications, 2012 (2012) · Zbl 1279.54026
[4] Kirk, W. A.; Caristi, J., Mappings theorems in metric and Banach spaces, Bulletin de l’Académie Polonaise des Sciences, 23, 8, 891-894 (1975) · Zbl 0313.47041
[5] Kirk, W. A., Caristi’s fixed point theorem and metric convexity, Colloquium Mathematicum, 36, 1, 81-86 (1976) · Zbl 0353.53041
[6] Jachymski, J. R., Caristi’s fixed point theorem and selections of set-valued contractions, Journal of Mathematical Analysis and Applications, 227, 1, 55-67 (1998) · Zbl 0916.47044
[7] Bae, J. S., Fixed point theorems for weakly contractive multivalued maps, Journal of Mathematical Analysis and Applications, 284, 2, 690-697 (2003) · Zbl 1033.47038
[8] Suzuki, T., Generalized Caristi’s fixed point theorems by Bae and others, Journal of Mathematical Analysis and Applications, 302, 2, 502-508 (2005) · Zbl 1059.54031
[9] Feng, Y. Q.; Liu, S. Y., Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, Journal of Mathematical Analysis and Applications, 317, 1, 103-112 (2006) · Zbl 1094.47049
[10] Khamsi, M. A., Remarks on Caristi’s fixed point theorem, Nonlinear Analysis: Theory, Methods & Applications, 71, 1-2, 227-231 (2009) · Zbl 1175.54056
[11] Li, Z., Remarks on Caristi’s fixed point theorem and Kirk’s problem, Nonlinear Analysis: Theory, Methods & Applications, 73, 12, 3751-3755 (2010) · Zbl 1201.54036
[12] Li, Z.; Jiang, S., Maximal and minimal point theorems and Caristi’s fixed point theorem, Fixed Point Theory and Applications, 2011 (2011) · Zbl 1304.54085
[13] Altun, I.; Rakočević, V., Ordered cone metric spaces and fixed point results, Computers & Mathematics with Applications, 60, 5, 1145-1151 (2010) · Zbl 1201.65084
[14] Nashine, H. K.; Kadelburg, Z.; Radenović, S., Coincidence and fixed point results in ordered G-cone metric spaces, Mathematical and Computer Modelling, 57, 3-4, 701-709 (2013) · Zbl 1305.54054
[15] Kurepa, D. R., Tableaux ramifiés d’ensembles, Espaces pseudo-distanciés, Comptes Rendus de l’Académie des Sciences, 198, 1563-1565 (1934) · Zbl 0009.13205
[16] Zabrejko, P. P., \(K\)-metric and \(K\)-normed linear spaces: survey, Collectanea Mathematica, 48, 4-6, 825-859 (1997) · Zbl 0892.46002
[17] Kadelburg, Z.; Radenović, S.; Rakočević, V., A note on the equivalence of some metric and cone metric fixed point results, Applied Mathematics Letters, 24, 3, 370-374 (2011) · Zbl 1213.54067
[18] Janković, S.; Kadelburg, Z.; Radenović, S., On cone metric spaces: a survey, Nonlinear Analysis: Theory, Methods & Applications, 74, 7, 2591-2601 (2011) · Zbl 1221.54059
[19] Kadelburg, Z.; Pavlović, M.; Radenović, S., Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Computers & Mathematics with Applications, 59, 9, 3148-3159 (2010) · Zbl 1193.54035
[20] Alghamdi, M. A.; Alnafei, S. H.; Radenović, S.; Shahzad, N., Fixed point theorems for convex contraction mappings on cone metric spaces, Mathematical and Computer Modelling, 54, 9-10, 2020-2026 (2011) · Zbl 1235.54021
[21] Arandjelović, I.; Kadelburg, Z.; Radenović, S., Boyd-Wong-type common fixed point results in cone metric spaces, Applied Mathematics and Computation, 217, 17, 7167-7171 (2011) · Zbl 1213.54059
[22] Alnafei, S. H.; Radenović, S.; Shahzad, N., Fixed point theorems for mappings with convex diminishing diameters on cone metric spaces, Applied Mathematics Letters, 24, 12, 2162-2166 (2011) · Zbl 1230.54033
[23] Shatanawi, W.; Rajić, V. Ć.; Radenović, S.; Al-Rawashdeh, A., Mizoguchi-Takahashi-type theorems in tvs-cone metric spaces, Fixed Point Theory and Applications, 2012 (2012) · Zbl 1273.54076
[24] Radenović, S.; Kadelburg, Z., Quasi-contractions on symmetric and cone symmetric spaces, Banach Journal of Mathematical Analysis, 5, 1, 38-50 (2011) · Zbl 1297.54058
[25] Zhang, X., Fixed point theorems of monotone mappings and coupled fixed point theorems of mixed monotone mappings in ordered metric spaces, Acta Mathematica Sinica, 44, 4, 641-646 (2001) · Zbl 1011.54038
[26] Zhang, X., Fixed point theorems of multivalued monotone mappings in ordered metric spaces, Applied Mathematics Letters, 23, 3, 235-240 (2010) · Zbl 1203.54052
[27] Li, Z., Fixed point theorems in partially ordered complete metric spaces, Mathematical and Computer Modelling, 54, 1-2, 69-72 (2011) · Zbl 1225.54030
[28] Huang, L. G.; Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications, 332, 2, 1468-1476 (2007) · Zbl 1118.54022
[29] Du, Y. H., Total order minihedral cones, Journal of Systems Science and Mathematical Sciences, 8, 1, 19-24 (1988) · Zbl 0658.46006
[30] Deimling, K., Nonlinear Functional Analysis (1985), Berlin, Germany: Springer, Berlin, Germany · Zbl 0559.47040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.