×

Existence of solutions for a periodic boundary value problem via generalized weakly contractions. (English) Zbl 1273.54066

Summary: We discuss the existence of solutions for a periodic boundary value problem and for some polynomials. For this purpose, we present some fixed point theorems for weakly and generalized weakly contractive mappings in the setting of partially ordered complete metric spaces.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amini-Harandi, A.; Emami, H., A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Analysis. Theory, Methods & Applications, 72, 5, 2238-2242 (2010) · Zbl 1197.54054
[2] Harjani, J.; Sadarangani, K., Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Analysis. Theory, Methods & Applications, 71, 7-8, 3403-3410 (2009) · Zbl 1221.54058
[3] Nieto, J. J.; Pouso, R. L.; Rodríguez-López, R., Fixed point theorems in ordered abstract spaces, Proceedings of the American Mathematical Society, 135, 8, 2505-2517 (2007) · Zbl 1126.47045
[4] Nieto, J. J.; Rodríguez-López, R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22, 3, 223-239 (2005) · Zbl 1095.47013
[5] Nieto, J. J.; Rodríguez-López, R., Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Mathematica Sinica, 23, 12, 2205-2212 (2007) · Zbl 1140.47045
[6] Border, K. C., Fixed Point Theorems with Applications to Economics and Game Theory, viii+129 (1985), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0732.47050
[7] Ok, E. A., Real Analysis with Economic Applications (2007), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA · Zbl 1119.26001
[8] Banach, S., Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3, 133-181 (1922) · JFM 48.0201.01
[9] Agarwal, R. P.; El-Gebeily, M. A.; O’Regan, D., Generalized contractions in partially ordered metric spaces, Applicable Analysis, 87, 1, 109-116 (2008) · Zbl 1140.47042
[10] Alber, Ya. I.; Guerre-Delabriere, S., Principle of weakly contractive maps in Hilbert spaces, New Results in Operator Theory: Advances and Applications, 98, 7-22 (1997), Basel, Switzerland: Birkhäuser, Basel, Switzerland · Zbl 0897.47044
[11] Amini-Harandi, A., Endpoints of set-valued contractions in metric spaces, Nonlinear Analysis. Theory, Methods & Applications, 72, 1, 132-134 (2010) · Zbl 1226.54042
[12] Aydi, H.; Nashine, H. K.; Samet, B.; Yazidi, H., Coincidence and common fixed point results in partially ordered cone metric spaces and applications to integral equations, Nonlinear Analysis. Theory, Methods & Applications, 74, 17, 6814-6825 (2011) · Zbl 1226.54043
[13] Aydi, H.; Karapınar, E.; Shatanawi, W., Coupled fixed point results for \((\psi, \varphi)\)-weakly contractive condition in ordered partial metric spaces, Computers & Mathematics with Applications, 62, 12, 4449-4460 (2011) · Zbl 1236.54035
[14] Boyd, D. W.; Wong, J. S. W., On nonlinear contractions, Proceedings of the American Mathematical Society, 20, 458-464 (1969) · Zbl 0175.44903
[15] Drici, Z.; McRae, F. A.; Vasundhara Devi, J., Fixed-point theorems in partially ordered metric spaces for operators with PPF dependence, Nonlinear Analysis. Theory, Methods & Applications, 67, 2, 641-647 (2007) · Zbl 1127.47049
[16] Geraghty, M. A., On contractive mappings, Proceedings of the American Mathematical Society, 40, 604-608 (1973) · Zbl 0245.54027
[17] Gnana Bhaskar, T.; Lakshmikantham, V., Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis. Theory, Methods & Applications, 65, 7, 1379-1393 (2006) · Zbl 1106.47047
[18] Gordji, M. E.; Ramezani, M., A generalization of Mizoguchi and Takahashi’s theorem for single-valued mappings in partially ordered metric spaces, Nonlinear Analysis. Theory, Methods & Applications, 74, 13, 4544-4549 (2011) · Zbl 1220.54023
[19] Karapınar, E., Couple fixed point theorems for nonlinear contractions in cone metric spaces, Computers & Mathematics with Applications, 59, 12, 3656-3668 (2010) · Zbl 1198.65097
[20] Karapinar, E., Weak \(\phi \)-contraction on partial metric spaces, Journal of Computational Analysis and Applications, 14, 2, 206-210 (2012) · Zbl 1246.54045
[21] Karapınar, E., Fixed point theory for cyclic weak \(\phi \)-contraction, Applied Mathematics Letters, 24, 6, 822-825 (2011) · Zbl 1256.54073
[22] Lakshmikantham, V.; Ćirić, L., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis. Theory, Methods & Applications, 70, 12, 4341-4349 (2009) · Zbl 1176.54032
[23] Moradi, S.; Fathi, Z.; Analouee, E., The common fixed point of single-valued generalized \(\phi_f\)-weakly contractive mappings, Applied Mathematics Letters, 24, 5, 771-776 (2011) · Zbl 1296.54076
[24] Moradi, S.; Khojasteh, F., Endpoints of multi-valued generalized weak contraction mappings, Nonlinear Analysis. Theory, Methods & Applications, 74, 6, 2170-2174 (2011) · Zbl 1296.54077
[25] O’Regan, D.; Petruşel, A., Fixed point theorems for generalized contractions in ordered metric spaces, Journal of Mathematical Analysis and Applications, 341, 2, 1241-1252 (2008) · Zbl 1142.47033
[26] Petruşel, A.; Rus, I. A., Fixed point theorems in ordered \(L\)-spaces, Proceedings of the American Mathematical Society, 134, 2, 411-418 (2006) · Zbl 1086.47026
[27] Ran, A. C. M.; Reurings, M. C. B., A fixed point theorem in partially ordered sets and some applications to matrix equations, Proceedings of the American Mathematical Society, 132, 5, 1435-1443 (2004) · Zbl 1060.47056
[28] Rhoades, B. E., Some theorems on weakly contractive maps, Nonlinear Analysis. Theory, Methods & Applications, 47, 2683-2693 (2001) · Zbl 1042.47521
[29] Rouhani, B. D.; Moradi, S., Common fixed point of multivalued generalized \(φ\)-weak contractive mappings, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1202.54041
[30] Turinici, M., Abstract comparison principles and multivariable Gronwall-Bellman inequalities, Journal of Mathematical Analysis and Applications, 117, 1, 100-127 (1986) · Zbl 0613.47037
[31] Zhang, Q.; Song, Y., Fixed point theory for generalized \(\phi \)-weak contractions, Applied Mathematics Letters, 22, 1, 75-78 (2009) · Zbl 1163.47304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.