×

Aspects of likelihood inference. (English) Zbl 1273.62053

Summary: I review the classical theory of likelihood based inference and consider how it is being extended and developed for use in complex models and sampling schemes.

MSC:

62F10 Point estimation
62A99 Foundational topics in statistics
62H12 Estimation in multivariate analysis
62J12 Generalized linear models (logistic models)
65C60 Computational problems in statistics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Apanasovich, T.V., Ruppert, D., Lupton, J.R., Popovic, N., Turner, N.D., Chapkin, R.S. and Carroll, R.J. (2008). Aberrant crypt foci and semiparametric modeling of correlated binary data. Biometrics 64 490-500, 667. · Zbl 1137.62073
[2] Barndorff-Nielsen, O.E. and Cox, D.R. (1994). Inference and Asymptotics. Monographs on Statistics and Applied Probability 52 . London: Chapman & Hall. · Zbl 0826.62004
[3] Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B Stat. Methodol. 36 192-236. With discussion by D.R. Cox, A.G. Hawkes, P. Clifford, P. Whittle, K. Ord, R. Mead, J.M. Hammersley, and M.S. Bartlett and with a reply by the author. · Zbl 0327.60067
[4] Besag, J. (1975). Statistical analysis of non-lattice data. Statistician 24 179-195.
[5] Bjørnstad, J.F. (1990). Predictive likelihood: A review. Statist. Sci. 5 242-265. With comments and a rejoinder by the author. · Zbl 0955.62517
[6] Brazzale, A.R., Davison, A.C. and Reid, N. (2007). Applied Asymptotics : Case Studies in Small-Sample Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 23 . Cambridge: Cambridge Univ. Press. · Zbl 1152.62077
[7] Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalised linear models. J. Amer. Statist. Assoc. 88 9-25. · Zbl 0775.62195
[8] Brown, E.N., Barbieri, R., Eden, U.T. and Frank, L.M. (2004). Likelihood methods for neural spike train data analysis. In Computational Neuroscience. Chapman & Hall/CRC Math. Biol. Med. Ser. 253-286. Boca Raton, FL: Chapman & Hall/CRC.
[9] Chen, J. and Sitter, R.R. (1999). A pseudo empirical likelihood approach to the effective use of auxiliary information in complex surveys. Statist. Sinica 9 385-406. · Zbl 0930.62005
[10] Cox, D.R. (1972). Regression models and life-tables. J. R. Stat. Soc. Ser. B Stat. Methodol. 34 187-220. With discussion by F. Downton, Richard Peto, D.J. Bartholomew, D.V. Lindley, P.W. Glassborow, D.E. Barton, Susannah Howard, B. Benjamin, John J. Gart, L.D. Meshalkin, A.R. Kagan, M. Zelen, R.E. Barlow, Jack Kalbfleisch, R.L. Prentice and Norman Breslow, and a reply by D.R. Cox. · Zbl 0243.62041
[11] Cox, D.R. and Hinkley, D.V. (1974). Theoretical Statistics . London: Chapman & Hall. · Zbl 0334.62003
[12] Cox, D.R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 49 1-39. With a discussion. · Zbl 0616.62006
[13] Datta, G.S. and Mukerjee, R. (2004). Probability Matching Priors : Higher Order Asymptotics. Lecture Notes in Statistics 178 . New York: Springer. · Zbl 1044.62031
[14] Davis, R.A., Klüppelberg, C. and Steinkohl, C. (2012). Statistical inference for max-stable processes in space and time. Preprint, available at , accessed on August 6, 2012. 1204.5581v1
[15] Davis, R.A. and Yau, C.Y. (2011). Comments on pairwise likelihood in time series models. Statist. Sinica 21 255-277. · Zbl 1206.62146
[16] Davison, A.C. (2003). Statistical Models. Cambridge Series in Statistical and Probabilistic Mathematics 11 . Cambridge: Cambridge Univ. Press.
[17] Davison, A.C., Padoan, S.A. and Ribatet, M. (2012). Statistical modelling of spatial extremes. Statist. Sci. 27 161-186. · Zbl 1330.86021
[18] DiCiccio, T.J. and Martin, M.A. (1993). Simple modifications for signed roots of likelihood ratio statistics. J. R. Stat. Soc. Ser. B Stat. Methodol. 55 305-316. · Zbl 0794.62014
[19] Divino, F., Frigessi, A. and Green, P.J. (2000). Penalized pseudolikelihood inference in spatial interaction models with covariates. Scand. J. Statist. 27 445-458. · Zbl 0976.62092
[20] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. · Zbl 1073.62547
[21] Fearnhead, P. and Prangle, D. (2012). Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation. J. R. Stat. Soc. Ser. B Stat. Methodol. 74 419-474.
[22] Fisher, R.A. (1922). On the mathematical foundations of theoretical statistics. Phil. Trans. Roy. Soc. A 222 , 309-368. · JFM 48.1280.02
[23] Fisher, R.A. (1956). Statistical Methods and Scientific Inference . Edinburgh: Oliver and Boyd. Third edition 1973. · Zbl 0070.36903
[24] Fraser, D.A.S., Reid, N. and Wu, J. (1999). A simple general formula for tail probabilities for frequentist and Bayesian inference. Biometrika 86 249-264. · Zbl 0932.62003
[25] Gao, X. and Massam, H. (2012). Composite likelihood estimation of high dimensional Gaussian graphical models with symmetry. Presented at BIRS Workshop on Composite Likelihood, April, 2012 (see Joe (2012)).
[26] Gao, X. and Song, P.X.K. (2010). Composite likelihood Bayesian information criteria for model selection in high-dimensional data. J. Amer. Statist. Assoc. 105 1531-1540. Supplementary materials available online. · Zbl 1388.62034
[27] Geyer, C.J. and Thompson, E.A. (1992). Constrained Monte Carlo maximum likelihood for dependent data. J. R. Stat. Soc. Ser. B Stat. Methodol. 54 657-699. With discussion and a reply by the authors.
[28] Green, P.J. (1987). Penalized likelihood for general semi-parametric regression models. Internat. Statist. Rev. 55 245-259. · Zbl 0636.62068
[29] Hjort, N.L., McKeague, I.W. and Van Keilegom, I. (2009). Extending the scope of empirical likelihood. Ann. Statist. 37 1079-1111. · Zbl 1160.62029
[30] Joe, H. (2012). Report on the Workshop on Composite Likelihood. Available at .
[31] Lee, Y. and Nelder, J.A. (1996). Hierarchical generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 58 619-678. With discussion. · Zbl 0880.62076
[32] Lee, Y., Nelder, J.A. and Pawitan, Y. (2006). Generalized Linear Models with Random Effects : Unified Analysis via \(H\)-Likelihood. Monographs on Statistics and Applied Probability 106 . Boca Raton, FL: Chapman & Hall/CRC. · Zbl 1110.62092
[33] Liang, K.Y. and Zeger, S.L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73 13-22. · Zbl 0595.62110
[34] Lindsay, B.G. (1988). Composite likelihood methods. In Statistical Inference from Stochastic Processes ( Ithaca , NY , 1987). Contemp. Math. 80 221-239. Providence, RI: Amer. Math. Soc. · Zbl 0672.62069
[35] Marin, J.M., Pudlo, P., Robert, C.P. and Ryder, R.J. (2011). Approximate Bayesian computational methods. Statist. Comput. 21 1-14. · Zbl 1252.62022
[36] Murphy, S.A. and van der Vaart, A.W. (2000). On profile likelihood. J. Amer. Statist. Assoc. 95 449-485. With comments and a rejoinder by the authors. · Zbl 0995.62033
[37] Owen, A. (2001). Empirical Likelihood . London: Chapman & Hall/CRC. · Zbl 0989.62019
[38] Pace, L. and Salvan, A. (1997). Principles of Statistical Inference From a Neo-Fisherian Perspective. Advanced Series on Statistical Science & Applied Probability 4 . River Edge, NJ: World Scientific. · Zbl 0911.62003
[39] Pace, L. and Salvan, A. (2006). Adjustments of the profile likelihood from a new perspective. J. Statist. Plann. Inference 136 3554-3564. · Zbl 1093.62028
[40] Renard, D., Molenberghs, G. and Geys, H. (2004). A pairwise likelihood approach to estimation in multilevel probit models. Comput. Statist. Data Anal. 44 649-667. · Zbl 1429.62324
[41] Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 319-392. · Zbl 1248.62156
[42] Severini, T.A. (2000). Likelihood Methods in Statistics. Oxford Statistical Science Series 22 . Oxford: Oxford Univ. Press. · Zbl 0984.62002
[43] Sisson, S.A., Fan, Y. and Tanaka, M.M. (2007). Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 104 1760-1765 (electronic). · Zbl 1160.65005
[44] Tierney, L. and Kadane, J.B. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81 82-86. · Zbl 0587.62067
[45] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3 . Cambridge: Cambridge Univ. Press. · Zbl 0910.62001
[46] Varin, C., Reid, N. and Firth, D. (2011). An overview of composite likelihood methods. Statist. Sinica 21 5-42. · Zbl 05849508
[47] Wedderburn, R.W.M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61 439-447. · Zbl 0292.62050
[48] Wu, C. and Rao, J.N.K. (2006). Pseudo-empirical likelihood ratio confidence intervals for complex surveys. Canad. J. Statist. 34 359-375. · Zbl 1104.62008
[49] Xue, L., Zou, H. and Cai, T. (2012). Non-concave penalized composite conditional likelihood estimation of sparse Ising models. Ann. Statist. 40 1403-1429. · Zbl 1284.62451
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.