zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An efficient parallel algorithm for the numerical solution of fractional differential equations. (English) Zbl 1273.65101
Summary: The numerical solution of differential equations of fractional order is known to be a computationally very expensive problem due to the nonlocal nature of the fractional differential operators. We demonstrate that parallelization may be used to overcome these difficulties. To this end we propose to implement the fractional version of the second-order Adams-Bashforth-Moulton method on a parallel computer. According to many recent publications, this algorithm has been successfully applied to a large number of fractional differential equations arising from a variety of application areas. The precise nature of the parallelization concept is discussed in detail and some examples are given to show the viability of our approach.

65L06Multistep, Runge-Kutta, and extrapolation methods
34A08Fractional differential equations
65R20Integral equations (numerical methods)
45J05Integro-ordinary differential equations
65Y05Parallel computation (numerical methods)
68W10Parallel algorithms
Full Text: DOI