×

zbMATH — the first resource for mathematics

Boundary behavior of viscous fluids: Influence of wall roughness and friction-driven boundary conditions. (English) Zbl 1273.76073
Summary: We consider a family of solutions to the evolutionary Navier-Stokes system supplemented with the complete slip boundary conditions on domains with rough boundaries. We give a complete description of the asymptotic limit by means of \(\Gamma \)-convergence arguments, and identify a general class of boundary conditions.

MSC:
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35Q30 Navier-Stokes equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amirat A.A., Bresch D., Lemoine J., Simon J.: Effect of rugosity on a flow governed by stationary Navier–Stokes equations. Quart. Appl. Math. 59, 768–785 (2001) · Zbl 1019.76014
[2] Amirat A.A., Climent E., Fernández-Cara E., Simon J.: The Stokes equations with Fourier boundary conditions on a wall with asperities. Math. Models. Methods Appl. 24, 255–276 (2001) · Zbl 1007.35058 · doi:10.1002/mma.206
[3] Ansini N., Garroni A.: \(\Gamma\)-convergence of functionals on divergence-free fields. ESAIM Control Optim. Calc. Var. 13(4), 809–828 (2007) (electronic) · Zbl 1127.49011 · doi:10.1051/cocv:2007041
[4] Basson A., Gérard-Varet D.: Wall laws for fluid flows at a boundary with random roughness. Preprint (2006) · Zbl 1179.35207
[5] Bogovskii M.E.: Solution of some vector analysis problems connected with operators div and grad (in Russian). Trudy Sem. S.L. Sobolev 80(1), 5–40 (1980)
[6] Bouchitté G., Seppecher P.: Cahn and Hilliard fluid on an oscillating boundary. Motion by Mean Curvature and Related Topics (Trento, 1992), de Gruyter, Berlin, 23–42, 1994 · Zbl 0807.76081
[7] Bucur D., Feireisl E., Nečasová Š., Wolf J.: On the asymptotic limit of the Navier–Stokes system on domains with rough boundaries. J. Differ. Equ. 244, 2890–2908 (2008) · Zbl 1143.35080 · doi:10.1016/j.jde.2008.02.040
[8] Bucur D., Feireisl E., Nečasová Š.: On the asymptotic limit of flows past a ribbed boundary J. Math. Fluid Mech. 10(4), 554–568 (2008) · Zbl 1189.35219 · doi:10.1007/s00021-007-0242-1
[9] Casado-Díaz J., Fernández-Cara E., Simon J.: Why viscous fluids adhere to rugose walls: A mathematical explanation. J. Differ. Equ. 189, 526–537 (2003) · Zbl 1061.76014 · doi:10.1016/S0022-0396(02)00115-8
[10] Chenais D.: On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52(2), 189–219 (1975) · Zbl 0317.49005 · doi:10.1016/0022-247X(75)90091-8
[11] Dal Maso G.: An introduction to \(\Gamma\)-convergence. Progress in Nonlinear Differential Equations and their Applications, Vol. 8. Birkhäuser Boston, Boston, 1993 · Zbl 0816.49001
[12] Dal Maso G., Defranceschi A., Vitali E.: Integral representation for a class of C 1-convex functionals. J. Math. Pures Appl. (9) 73(1), 1–46 (1994) · Zbl 0853.49013
[13] Defranceschi A., Vitali E.: Limits of minimum problems with convex obstacles for vector valued functions. Appl. Anal. 52(1–4), 1–33 (1994) · Zbl 0839.49011 · doi:10.1080/00036819408840221
[14] El Jarroudi M., Brillard A.: Relaxed Dirichlet problem and shape optimization within the linear elasticity framework. NoDEA Nonlinear Differ. Equ. Appl. 11(4), 511–528 (2004) · Zbl 1109.49041 · doi:10.1007/s00030-004-2025-1
[15] Galdi G.P.: An introduction to the mathematical theory of the Navier–Stokes equations, I. Springer, New York (1994) · Zbl 0949.35004
[16] Henrot A., Pierre M.: Variation et optimisation de formes. Une analyse géométrique. Mathématiques & Applications (Berlin), Vol. 48. Springer, Berlin, 2005 · Zbl 1098.49001
[17] Hesla T.I.: Collision of smooth bodies in a viscous fluid: A mathematical investigation. Ph.D. Thesis, Minnesota, 2005
[18] Hillairet M.: Lack of collision between solid bodies in a 2D incompressible viscous flow. Preprint, ENS Lyon, 2006 · Zbl 1221.35279
[19] Jaeger W., Mikelić A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170, 96–122 (2001) · Zbl 1009.76017 · doi:10.1006/jdeq.2000.3814
[20] Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969) · Zbl 0184.52603
[21] Málek J., Rajagopal K.R.: Mathematical issues concerning the Navier–Stokes equations and some of its generalizations. Evolutionary Equations Vol. II. Handb. Differ. Equ. Elsevier/North-Holland, Amsterdam, pp. 371–459, 2005 · Zbl 1095.35027
[22] Moffat H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1 (1964) · Zbl 0118.20501 · doi:10.1017/S0022112064000015
[23] Nitsche J.A.: On Korn’s second inequality. RAIRO Anal. Numer. 15, 237–248 (1981) · Zbl 0467.35019
[24] Priezjev N.V., Darhuber A.A., Troian S.M.: Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations. Phys. Rev. E 71, 041608 (2005) · doi:10.1103/PhysRevE.71.041608
[25] Priezjev N.V., Troian S.M.: Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006) · Zbl 1091.76016 · doi:10.1017/S0022112006009086
[26] Sohr H.: The Navier–Stokes equations: An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001) · Zbl 0983.35004
[27] Temam R.: Navier–Stokes equations. North-Holland, Amsterdam (1977) · Zbl 0383.35057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.