×

zbMATH — the first resource for mathematics

Holomorphic supercurves and supersymmetric sigma models. (English) Zbl 1273.81148
Summary: We introduce a natural generalisation of holomorphic curves to morphisms of supermanifolds, referred to as holomorphic supercurves. More precisely, supercurves are morphisms from a Riemann surface, endowed with the structure of a supermanifold which is induced by a holomorphic line bundle, to an ordinary almost complex manifold. They are called holomorphic if a generalised Cauchy-Riemann condition is satisfied. We show, by means of an action identity, that holomorphic supercurves are special extrema of a supersymmetric action functional.{
©2011 American Institute of Physics}

MSC:
81T10 Model quantum field theories
81T20 Quantum field theory on curved space or space-time backgrounds
81T60 Supersymmetric field theories in quantum mechanics
58C50 Analysis on supermanifolds or graded manifolds
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
32Q05 Negative curvature complex manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1090/coll/052
[2] DOI: 10.1007/978-1-4612-4084-6
[3] DOI: 10.1007/978-3-662-04672-2
[4] DOI: 10.1007/s00209-006-0961-7 · Zbl 1103.53033
[5] DOI: 10.1090/gsm/025
[6] Baum H., Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten (1981) · Zbl 0519.53054
[7] DOI: 10.1142/9789812810571_0002
[8] Atiyah M., Ann. Sci. Ec. Normale Super. 4 (1971)
[9] Gastesi P., Riemann Surfaces (2006)
[10] DOI: 10.1090/cln/011
[11] Harvey F., Spinors and Calibrations (1990) · Zbl 0694.53002
[12] Deligne P., Quantum Fields and Strings: A Course for Mathematicians (1999)
[13] Witten E., Essays on Mirror Manifolds pp 120– (1992)
[14] DOI: 10.1007/s00209-005-0788-7 · Zbl 1091.53042
[15] Freed D., Five Lectures on Supersymmetry (1999) · Zbl 0937.81001
[16] DOI: 10.1070/RM1980v035n01ABEH001545 · Zbl 0462.58002
[17] Deligne P., Quantum Fields and Strings: A Course for Mathematicians (1999)
[18] DOI: 10.1007/s00209-007-0288-z · Zbl 1154.58001
[19] C. Sachse, ”Global analytic approach to super Teichmüller spaces,” Ph.D. dissertation (Universität Leipzig, 2007). · Zbl 1147.32011
[20] DOI: 10.1215/S0012-7094-87-05421-4 · Zbl 0628.32012
[21] Hélein F., Systèmes Intégrables et Théorie des Champs Quantiques pp 103– (2009)
[22] DOI: 10.1063/1.2840464 · Zbl 1153.81374
[23] DOI: 10.1007/BF01228415 · Zbl 0662.58008
[24] DOI: 10.1007/BF01077738 · Zbl 0668.58003
[25] Alekseevsky D. V., J. Geom. Phys. 25 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.