Grosi, Massimo; Pacella, Filomena; Yadava, S. L. Symmetry results for perturbed problems and related questions. (English) Zbl 1274.35021 Topol. Methods Nonlinear Anal. 21, No. 2, 211-226 (2003). Summary: In this paper we prove a symmetry result for positive solutions of the Dirichlet problem\[ \left\{\begin{align*}{-\Delta u=f(u)&\quad\text{in }\; D,\cr u=0\qquad\quad&\quad \text{on }\;\partial D,\cr}\end{align*}\right. \]when \(f\) satisfies suitable assumptions and \(D\) is a small symmetric perturbation of a domain \(\Omega\) for which the Gidas-Ni-Nirenberg symmetry theorem applies. We consider both the case when \(f\) has subcritical growth and \(f(s)=s^{(N+2)/(N-2)}+\lambda s\), \(N\geq 3\), \(\lambda\) suitable positive constant. Cited in 6 Documents MSC: 35B38 Critical points of functionals in context of PDEs (e.g., energy functionals) 35B50 Maximum principles in context of PDEs 35J10 Schrödinger operator, Schrödinger equation 35J60 Nonlinear elliptic equations Keywords:elliptic equations; symmetry of solutions PDFBibTeX XMLCite \textit{M. Grosi} et al., Topol. Methods Nonlinear Anal. 21, No. 2, 211--226 (2003; Zbl 1274.35021) Full Text: DOI