×

Inverse problems for a parabolic integrodifferential equation in a convolutional weak form. (English) Zbl 1274.35412

Summary: We deduce formulas for the Fréchet derivatives of cost functionals of several inverse problems for a parabolic integrodifferential equation in a weak formulation. The method consists in the application of an integrated convolutional form of the weak problem and all computations are implemented in regular Sobolev spaces.

MSC:

35R30 Inverse problems for PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems (2000), Dodrecht, The Netherlands: Kluwer Academic Publisher, Dodrecht, The Netherlands
[2] Ladyženskaja, O. A.; Solonnikov, V. A.; Uraltseva, N. N., Linear and Quasilinear Equations of Parabolic Type, xi+648 (1968), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0174.15403
[3] Evans, L. C., Partial Differential Equations. Partial Differential Equations, Graduate Studies in Mathematics, 19, xxii+749 (2010), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 1194.35001
[4] Amendola, G.; Fabrizio, M.; Golden, J. M., Thermodynamics of Materials with Memory. Theory and application, xvi+574 (2012), New York, NY, USA: Springer, New York, NY, USA · Zbl 1237.80001 · doi:10.1007/978-1-4614-1692-0
[5] Messaoudi, S. A., Blow-up of solutions of a semilinear heat equation with a memory term, Abstract and Applied Analysis, 2, 87-94 (2005) · Zbl 1122.35363 · doi:10.1155/AAA.2005.87
[6] Prüss, J., Evolutionary Integral Equations and Applications. Evolutionary Integral Equations and Applications, Monographs in Mathematics, 87, xxvi+366 (1993), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA · Zbl 0784.45006 · doi:10.1007/978-3-0348-8570-6
[7] Janno, J.; Wolfersdorf, L. V., Identification of memory kernels in general linear heat flow, Journal of Inverse and Ill-Posed Problems, 6, 2, 141-164 (1998) · Zbl 0929.35172 · doi:10.1515/jiip.1998.6.2.141
[8] Janno, J.; Kasemets, K., A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination, Inverse Problems and Imaging, 3, 1, 17-41 (2009) · Zbl 1187.35267 · doi:10.3934/ipi.2009.3.17
[9] Lorenzi, A.; Prilepko, A., Fredholm-type results for integrodifferential identification parabolic problems, Differential and Integral Equations, 6, 3, 535-552 (1993) · Zbl 0820.35140
[10] Lorenzi, A.; Mola, G., Identification of unknown terms in convolution integro-differential equations in a Banach space, Journal of Inverse and Ill-Posed Problems, 18, 3, 321-355 (2010) · Zbl 1279.45015 · doi:10.1515/JIIP.2010.013
[11] Beretta, E.; Cavaterra, C., Identifying a space dependent coefficient in a reaction-diffusion equation, Inverse Problems and Imaging, 5, 2, 285-296 (2011) · Zbl 1219.35351 · doi:10.3934/ipi.2011.5.285
[12] Hasanov, A., Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: weak solution approach, Journal of Mathematical Analysis and Applications, 330, 2, 766-779 (2007) · Zbl 1120.35083 · doi:10.1016/j.jmaa.2006.08.018
[13] Isakov, V., Inverse parabolic problems with the final overdetermination, Communications on Pure and Applied Mathematics, 44, 2, 185-209 (1991) · Zbl 0729.35146 · doi:10.1002/cpa.3160440203
[14] Lorenzi, A.; Vrabie, I. I., An identification problem for a linear evolution equation in a Banach space and applications, Discrete and Continuous Dynamical Systems. Series S, 4, 3, 671-691 (2011) · Zbl 1217.35213 · doi:10.3934/dcdss.2011.4.671
[15] Colombo, F.; Lorenzi, A., Identification of time and space dependent relaxation kernels for materials with memory related to cylindrical domains. I, II, Journal of Mathematical Analysis and Applications, 213, 1, 32-62 (1997) · Zbl 0892.45006 · doi:10.1006/jmaa.1997.5364
[16] Grasselli, M., An identification problem for a linear integrodifferential equation occurring in heat flow, Mathematical Methods in the Applied Sciences, 15, 3, 167-186 (1992) · Zbl 0753.45010 · doi:10.1002/mma.1670150304
[17] Janno, J., Determination of a time- and space-dependent heat flux relaxation function by means of a restricted Dirichlet-to-Neumann operator, Mathematical Methods in the Applied Sciences, 27, 11, 1241-1260 (2004) · Zbl 1054.45013 · doi:10.1002/mma.490
[18] Janno, J.; Lorenzi, A., A parabolic integro-differential identification problem in a barrelled smooth domain, Zeitschrift für Analysis und ihre Anwendungen, 25, 1, 103-130 (2006) · Zbl 1097.45015 · doi:10.4171/ZAA/1280
[19] Janno, J.; Lorenzi, A., Recovering memory kernels in parabolic transmission problems in infinite time intervals: the non-accessible case, Journal of Inverse and Ill-Posed Problems, 18, 4, 433-465 (2010) · Zbl 1279.35108 · doi:10.1515/JIIP.2010.020
[20] Janno, J.; Wolfersdorf, L. v., Identification of weakly singular memory kernels in heat conduction, Zeitschrift für Angewandte Mathematik und Mechanik, 77, 4, 243-257 (1997) · Zbl 0883.35054 · doi:10.1002/zamm.19970770403
[21] Janno, J.; von Wolfersdorf, L., An inverse problem for identification of a time- and space-dependent memory kernel of a special kind in heat conduction, Inverse Problems, 15, 6, 1455-1467 (1999) · Zbl 0947.35172 · doi:10.1088/0266-5611/15/6/305
[22] Janno, J.; v. Wolfersdorf, L., Inverse problems for memory kernels by Laplace transform methods, Zeitschrift für Analysis und ihre Anwendungen, 19, 2, 489-510 (2000) · Zbl 0956.35131
[23] Lorenzi, A.; Messina, F., An identification problem with evolution on the boundary of parabolic type, Advances in Differential Equations, 13, 11-12, 1075-1108 (2008) · Zbl 1187.45013
[24] Zeidler, E., Applied Functional Analysis. Main principles and their application. Applied Functional Analysis. Main principles and their application, Applied Mathematical Sciences, 109, xvi+404 (1995), New York, NY, USA: Springer, New York, NY, USA · Zbl 0834.46003
[25] Kasemets, K.; Janno, J., Reconstruction of a source term in a parabolic integro-differential equation from final data, Mathematical Modelling and Analysis, 16, 2, 199-219 (2011) · Zbl 1219.35362 · doi:10.3846/13926292.2011.578282
[26] Vasil’ev, F. P., Methods of Solving Extremum Problems, 550 (1988), Moscow, Russia: Nauka, Moscow, Russia · Zbl 0661.65055
[27] Kaltenbacher, B., Regularization by projection with a posteriori discretization level choice for linear and nonlinear ill-posed problems, Inverse Problems, 16, 5, 1523-1539 (2000) · Zbl 0978.65045 · doi:10.1088/0266-5611/16/5/322
[28] Plato, R.; Vainikko, G., On the regularization of projection methods for solving ill-posed problems, Numerische Mathematik, 57, 1, 63-79 (1990) · Zbl 0675.65053 · doi:10.1007/BF01386397
[29] Hämarik, U.; Palm, R., On rules for stopping the conjugate gradient type methods in ill-posed problems, Mathematical Modelling and Analysis, 12, 1, 61-70 (2007) · Zbl 1121.65059 · doi:10.3846/1392-6292.2007.12.61-70
[30] Scherzer, O., A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems, Numerical Functional Analysis and Optimization, 17, 1-2, 197-214 (1996) · Zbl 0852.65048 · doi:10.1080/01630569608816691
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.