Optimality conditions for nonconvex variational problems relaxed in terms of Young measures. (English) Zbl 1274.49040

Summary: The scalar nonconvex variational problems of the minimum-energy type on Sobolev spaces are studied. As the Euler-Lagrange equation dramatically looses selectivity when extended in terms of the Young measures, the correct optimality conditions are sought by means of the convex compactification theory. It turns out that these conditions basically combine one part from the Euler-Lagrange equation with one part from the Weierstrass condition.


49K27 Optimality conditions for problems in abstract spaces
49J40 Variational inequalities
Full Text: Link


[1] Aubin J.-P., Ekeland I.: Applied Nonlinear Analysis. Wiley, New York 1984 · Zbl 1115.47049
[2] Aubin J.-P., Frankowska H.: Set-valued Analysis. Birkhäuser 1990 · Zbl 1168.49014
[3] Ball J. M., James R. D.: Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1988), 13-52 · Zbl 0629.49020
[4] Ball J. M., James R. D.: Proposed experimental tests of a theory of fine microstructure and the two-well problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1992), 389-450 · Zbl 0758.73009
[5] Chipot M., Kinderlehrer D.: Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 (1988), 237-277 · Zbl 0673.73012
[6] DiPerna R. J., Majda A. J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Physics 108 (1987), 667-689 · Zbl 0626.35059
[7] Gamkrelidze R. V.: Principles of Optimal Control Theory (in Russian). Tbilisi Univ. Press, Tbilisi 1977. (
[8] Hoffmann K.-H., Roubíček T.: Optimal control of a fine structure. Appl. Math. Optim. 30 (1994), 113-126 · Zbl 0812.49009
[9] Ioffe A. D., Tihomirov V. M.: Extensions of variational problems. Trans. Moscow Math. Soc. 18 (1968), 207-273 · Zbl 0194.13902
[10] Kinderlehrer D., Pedregal P.: Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal. 115 (1991), 329-365 · Zbl 0754.49020
[11] Kinderlehrer D., Pedregal P.: Weak convergence of integrands and the Young measure representation. SIAM J. Math. Anal. 23 (1992), 1-19 · Zbl 0757.49014
[12] Kinderlehrer D., Pedregal P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994), 59-90 · Zbl 0828.46031
[13] Kružík M., Roubíček T.: Explicit characterization of \(L^p\)-Young measures. J. Math. Anal. Appl. 198 (1996), 830-843 · Zbl 0876.49039
[14] McShane E. J.: Necessary conditions in the generalized-curve problems of the calculus of variations. Duke Math. J. 7 (1940), 1-27 · Zbl 0024.32503
[15] Roubíček T.: Convex compactifications and special extensions of optimization problems. Nonlinear Anal. 16 (1991), 1117-1126 · Zbl 0728.49006
[16] Roubíček T.: A note about optimality conditions for variational problems with rapidly oscillating solutions. Progress in Partial Differential Equations: Calculus of Variations, Applications (C. Bandle et al, Pitman Res. Notes in Math. Sci. 267), Longmann, Harlow, Essex 1992, pp. 312-314 · Zbl 0794.49021
[17] Roubíček T.: Nonconcentrating generalized Young functionals. Comment. Math. Univ. Carolin. 38 (1997), 91-99 · Zbl 0888.49027
[18] Roubíček T., Hoffmann K.-H.: About the concept of measure-valued solutions to distributed parameter systems. Math. Methods Appl. Sci. 18 (1995), 671-685 · Zbl 0828.35024
[19] Roubíček T., Hoffmann K.-H.: Theory of convex local compactifications with applications to Lebesgue spaces. Nonlinear Anal. 25 (1995), 607-628 · Zbl 1129.46306
[20] Weierstraß K.: Mathematische Werke, Teil VII “Vorlesungen über Variationsrechnung”. (Nachdr. d. Ausg., Leipzig, 1927) Georg Olms, Verlagsbuchhandlung, Hildesheim 1967 · JFM 53.0025.04
[21] Young L. C.: Necessary conditions in the calculus of variations. Acta Math. 69 (1938), 239-258 · Zbl 0019.26702
[22] Young L. C.: Lectures on the Calculus of Variations and Optimal Control Theory. W. B. Saunders, Philadelphia 1969 · Zbl 0289.49003
[23] Zeidler E.: Nonlinear Functional Analysis and its Applications III. Variational Methods and Optimization. Springer, New York 1985 · Zbl 0583.47051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.