Balasubramanian, Ganesan Fuzzy \(\beta \)-open sets and fuzzy \(\beta \)-separation axioms. (English) Zbl 1274.54023 Kybernetika 35, No. 2, 215-223 (1999). Summary: In this paper, fuzzy separation axioms are introduced and investigated with the help of fuzzy \(\beta \)-open sets. Cited in 1 Document MSC: 54A40 Fuzzy topology Keywords:fuzzy point; fuzzy set; fuzzy separation axioms PDF BibTeX XML Cite \textit{G. Balasubramanian}, Kybernetika 35, No. 2, 215--223 (1999; Zbl 1274.54023) Full Text: Link References: [1] Monseb, Abd. El., El-Deeb S. N., Mahmould R. A.: \(\beta \)-open sets and \(\beta \)-continuous mapping. Bull. Fac. Sci. Assiut Univ. (1982) [2] Allam A. A., Hakkim, Abd. El.: On \(\beta \)-compact spaces. Bull. Calcuta Math. Soc. 81 (1989), 179-182 · Zbl 0676.54029 [3] Balasubramanian G.: On fuzzy \(\beta \)-compact spaces and fuzzy \(\beta \)-extremally disconnected spaces. Kybernetika 33 (1997), 271-277 · Zbl 0932.54008 · www.kybernetika.cz · eudml:27867 [4] Shahna A. S. Bin: On fuzzy strong semi continuity and fuzzy precontinuity. Fuzzy Sets and Systems 44 (1991), 303-308 · Zbl 0753.54001 · doi:10.1016/0165-0114(91)90013-G [5] Chandrika G. K.: Fuzzy Topological Spaces. Ph.D. Thesis, Bharathiar University, 1993 [6] Chang C. L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182-190 · Zbl 0167.51001 · doi:10.1016/0022-247X(68)90057-7 [7] Lowen R.: Fuzzy topological spaces and fuzzy compactness. J. Math. Anal. Appl. 56 (1976), 621-633 · Zbl 0342.54003 · doi:10.1016/0022-247X(76)90029-9 [8] Sugeno M.: An introductory survey of fuzzy control. Inform. Sci. 36 (1985), 59-83 · Zbl 0586.93053 · doi:10.1016/0020-0255(85)90026-X [9] Smets P.: The degree of belief in a fuzzy event. Inform. Sci. 25 (1981), 1-19 · Zbl 0472.62005 · doi:10.1016/0020-0255(81)90008-6 [10] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338-353 · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.