×

Limit theorems for a generalized Feller game. (English) Zbl 1274.60070

The topic is the Feller game, which is based on simple symmetric random walks. The author proves some limit theorems analogous to corresponding ones for the St. Petersburg game.

MSC:

60F05 Central limit and other weak theorems
60G50 Sums of independent random variables; random walks

References:

[1] Adler, A. (1990). Generalized one-sided laws of the iterated logarithm for random variables barely with or without finite mean. J. Theoret. Prob. 3, 587-597. · Zbl 0712.60029 · doi:10.1007/BF01046098
[2] Breiman, L. (1992). Probability . SIAM, Philadelphia, PA. · Zbl 0753.60001
[3] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation . Cambridge University Press. · Zbl 0667.26003
[4] Durrett, R. (2010). Probability: Theory and Examples , 4th edn. Cambridge University Press. · Zbl 1202.60001
[5] Feller, W. (1957). An Introduction to Probability Theory and Its Applications , Vol. I, 2nd edn. John Wiley, New York. · Zbl 0077.12201
[6] Grimmett, G. and Stirzaker, D. (2001). Probability and Random Processes , 3rd edn. Oxford University Press, New York. · Zbl 1015.60002
[7] Gut, A. (2004). An extension of the Kolmogorov-Feller weak law of large numbers with an application to the St. Petersburg game. J. Theoret. Prob. 17, 769-779. · Zbl 1064.60037 · doi:10.1023/B:JOTP.0000040299.15416.0c
[8] Gut, A. (2005). Probability: A Graduate Course . Springer, New York. · Zbl 1076.60001
[9] Gut, A. (2010). Limit theorems for a generalized St. Petersburg game. J. Appl. Prob. 47, 752-760. · Zbl 1207.60017 · doi:10.1239/jap/1285335407
[10] Hu, Y. and Nyrhinen, H. (2004). Large deviations view points for heavy-tailed random walks. J. Theoret. Prob. 17, 761-768. · Zbl 1068.60038 · doi:10.1023/B:JOTP.0000040298.43712.e8
[11] Maller, R. A. (1978). Relative stability and the strong law of large numbers. Z. Wahrscheinlichkeitsth. 43, 141-148. · Zbl 0366.60035 · doi:10.1007/BF00668456
[12] Martin-Löf, A. (1985). A limit theorem which clarifies the ‘Petersburg paradox’. J. Appl. Prob. 22, 634-643. · Zbl 0574.60032 · doi:10.2307/3213866
[13] Nolan, J. (2012). Stable Distributions: Models for Heavy Tailed Data . Birkhäuser, Boston, MA.
[14] Norris, J. R. (1997). Markov Chains . Cambridge University Press. · Zbl 0873.60043
[15] Rényi, A. (2007). Foundations of Probability . Dover Publications. · Zbl 1135.60003
[16] Stoica, G. (2008). Large gains in the St. Petersburg game. C. R. Math. Acad. Sci. Paris 346, 563-566. · Zbl 1152.60033 · doi:10.1016/j.crma.2008.03.026
[17] Zolotarev, V. M. (1986). One-Dimensional Stable Distributions . American Mathematical Society, Providence, RI. · Zbl 0589.60015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.