×

Backward doubly stochastic differential equations with infinite time horizon. (English) Zbl 1274.60193

In the paper, a class of infinite horizon backward doubly stochastic differential equations (BDSDEs) is studied. The existence and uniqueness of the solution is proved using a standard fixed point argument under (global in space, local in time) Lipschitz assumptions. The assumption of exponential decay of the solution (see, e.g., [Q. Zhang and H. Zhao, J. Funct. Anal. 252, No. 1, 171–219 (2007; Zbl 1127.60059)]) is replaced by assuming a square integrable terminal condition. The next result is a proof of continuous dependence on the terminal condition of the solution couple and a convergence result for the solutions to the BDSDEs for different terminal conditions converging in mean square. Finally, the last result is used to demonstrate the relation between finite and infinite time horizon BDSDEs.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

Citations:

Zbl 1127.60059
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] V. Bally, A. Matoussi: Weak solutions for SPDEs and backward doubly stochastic differential equations. J. Theor. Probab. 14 (2001), 125–164. · Zbl 0982.60057 · doi:10.1023/A:1007825232513
[2] R. Buckdahn, J. Ma: Stochastic viscosity solutions for nonlinear stochastic partial differential equations. I. Stoch. Proc. Appl. 93 (2001), 181–204. · Zbl 1053.60065 · doi:10.1016/S0304-4149(00)00093-4
[3] R. Buckdahn, J. Ma: Stochastic viscosity solutions for nonlinear stochastic partial differential equations. II. Stoch. Proc. Appl. 93 (2001), 205–228. · Zbl 1053.60066 · doi:10.1016/S0304-4149(00)00092-2
[4] Z. Chen, B. Wang: Infinite time interval BSDE and the convergence of g-martingales. J. Aust. Math. Soc., Ser. A 69 (2000), 187–211. · Zbl 0982.60052 · doi:10.1017/S1446788700002172
[5] R. Darling, E. Pardoux: Backward stochastic differential equations with random terminal time and applications to semilinear elliptic PDE. Ann. Probab. 25 (1997), 1135–1159. · Zbl 0895.60067 · doi:10.1214/aop/1024404508
[6] N. El Karoui, S. Peng, M.C. Quenez: Backward stochastic differential equations in finance. Math. Finance 7 (1977), 1–71. · Zbl 0884.90035 · doi:10.1111/1467-9965.00022
[7] J. Ma, P. Protter, J. Yong: Solving forward-backward stochastic differential equations explicitly-a four step scheme. Theory Related Fields 98 (1994), 339–359. · Zbl 0794.60056 · doi:10.1007/BF01192258
[8] D. Nualart, E. Pardoux: Stochastic calculus with anticipating integrands. Probab. Theory Relat. Fields 78 (1988), 535–581. · Zbl 0629.60061 · doi:10.1007/BF00353876
[9] E. Pardoux, S. Peng: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14 (1990), 55–61. · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
[10] E. Pardoux, S. Peng: Backward doubly stochastic differential equations and systems of quasilinear SPDEs. Probab. Theory Relat. Fields 98 (1994), 209–227. · Zbl 0792.60050 · doi:10.1007/BF01192514
[11] E. Pardoux: Stochastic partial differential equations. Fudan Lecture Notes. 2007.
[12] S. Peng: Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics Stochastics Rep. 37 (1991), 61–74. · Zbl 0739.60060 · doi:10.1080/17442509108833727
[13] S. Peng: Backward Stochastic Differential Equations and Related g-expectation. Longman, Harlow, 1997, pp. 141–159. · Zbl 0892.60066
[14] S. Peng, Y. Shi: Infinite horizon forward-backward stochastic differential equations. Stoch. Proc. Appl. 85 (2000), 75–92. · Zbl 0997.60062 · doi:10.1016/S0304-4149(99)00066-6
[15] S. Peng, Y. Shi: A type of time-symmetric forward-backward stochastic differential equations. C. R. Math., Acad. Sci. Paris 336 (2003), 773–778. · Zbl 1031.60055 · doi:10.1016/S1631-073X(03)00183-3
[16] Q. Zhang, H. Zhao: Stationary solutions of SPDEs and infinite horizon BDSDEs. J. Funct. Anal. 252 (2007), 171–219. · Zbl 1127.60059 · doi:10.1016/j.jfa.2007.06.019
[17] B. Zhu, B. Han: Comparison theorems for the multidimensional BDSDEs and applications. J. Appl. Math. 2012 (Article ID 304781, doi:10.1155/2012/304781). · Zbl 1244.60064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.