×

zbMATH — the first resource for mathematics

Controlling the degree of caution in statistical inference with the Bayesian and frequentist approaches as opposite extremes. (English) Zbl 1274.62052
Summary: In statistical practice, whether a Bayesian or frequentist approach is used in inference depends not only on the availability of prior information but also on the attitude taken toward partial prior information, with frequentists tending to be more cautious than Bayesians. The proposed framework defines that attitude in terms of a specified amount of caution, thereby enabling data analysis at the level of caution desired and on the basis of prior information. The caution parameter represents the attitude toward partial prior information in much the same way as a loss function represents the attitude toward risk. When there is very little prior information and nonzero caution, the resulting inferences correspond to those of the candidate confidence intervals and \(p\)-values that are most similar to the credible intervals and hypothesis probabilities of the specified Bayesian posterior. On the other hand, in the presence of a known physical distribution of the parameter, inferences are based only on the corresponding physical posterior. In those extremes of either negligible prior information or complete prior information, inferences do not depend on the degree of caution. Partial prior information between those two extremes leads to intermediate inferences that are more frequentist to the extent that the caution is high and more Bayesian to the extent that the caution is low.

MSC:
62A01 Foundations and philosophical topics in statistics
62C10 Bayesian problems; characterization of Bayes procedures
62C20 Minimax procedures in statistical decision theory
62F15 Bayesian inference
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Augustin, T. (2002). Expected utility within a generalized concept of probability - a comprehensive framework for decision making under ambiguity., Statistical Papers 43 5-22. · Zbl 1020.62005 · doi:10.1007/s00362-001-0083-6
[2] Bayati Eshkaftaki, A. and Parsian, A. (2011). Robust Bayes estimation., Communications in Statistics - Theory and Methods 40 929-941. · Zbl 1215.62005 · doi:10.1080/03610920903506553
[3] Berger, J. O., Insua, D. R. and Ruggeri, F. (2000)., Bayesian Robustness . Robust Bayesian Analysis 1 1-32. Springer, New York. · Zbl 1281.62076 · doi:10.1007/978-1-4612-1306-2_1
[4] Betrò, B. and Ruggeri, F. (1992). Conditional, \Gamma -minimax actions under convex losses. Communications in Statistics - Theory and Methods 21 1051-1066. · Zbl 0800.62043 · doi:10.1080/03610929208830830
[5] Bickel, D. R. (2011a). Blending Bayesian and frequentist methods according to the precision of prior information with an application to hypothesis testing., Technical Report, Ottawa Institute of Systems Biology ,
[6] Bickel, D. R. (2011b). Estimating the null distribution to adjust observed confidence levels for genome-scale screening., Biometrics 67 363-370. · Zbl 1219.62164 · doi:10.1111/j.1541-0420.2010.01491.x
[7] Bickel, D. R. (2011c). Small-scale inference: Empirical Bayes and confidence methods for as few as a single comparison., Technical Report, Ottawa Institute of Systems Biology ,
[8] Bickel, D. R. (2011d). The strength of statistical evidence for composite hypotheses: Inference to the best explanation., Statistica Sinica DOI: 10.5705/ss.2009.125 (online ahead of print). · Zbl 1257.62005
[9] Bickel, D. R. (2012a). Coherent frequentism: A decision theory based on confidence sets. To appear in, Communications in Statistics - Theory and Methods ; 2009 version available from · Zbl 1319.62007 · doi:10.1080/03610926.2010.543302
[10] Bickel, D. R. (2012b). Game-theoretic probability combination with applications to resolving conflicts between statistical methods. To appear in, International Journal of Approximate Reasoning ; 2011 version available from · Zbl 1446.62301
[11] Carlin, B. P. and Louis, T. A. (2009)., Bayesian Methods for Data Analysis, Third Edition . Chapman & Hall/CRC, New York. · Zbl 1165.62003
[12] Cover, T. M. and Thomas, J. A. (2006)., Elements of Information Theory . John Wiley and Sons, New York. · Zbl 1140.94001
[13] Csiszár, I. (1985). An extended maximum entropy principle and a Bayesian justification. In, Bayesian Statistics 2 (J. M. Bernardo, M. B. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 83-98. Elsevier Inc., Amsterdam. · Zbl 0672.62004
[14] Efron, B. (1993). Bayes and likelihood calculations from confidence intervals., Biometrika 80 3-26. · Zbl 0773.62021 · doi:10.1093/biomet/80.1.3
[15] Efron, B. (2005). Bayesians, Frequentists, and Scientists., Journal of the American Statistical Association 100 1-5. · Zbl 1117.62325 · doi:10.1198/016214505000000033 · masetto.asa.catchword.org
[16] Ellsberg, D. (1961). Risk, ambiguity, and the Savage axioms., The Quarterly Journal of Economics 75 pp. 643-669. · Zbl 1280.91045
[17] Fraser, D. A. S. (2011). Is Bayes posterior just quick and dirty confidence?, Statistical Science 26 299-316. · Zbl 1246.62040 · doi:10.1214/11-STS352
[18] Gajdos, T., Hayashi, T., Tallon, J. M. and Vergnaud, J. C. (2008). Attitude toward imprecise information., Journal of Economic Theory 140 27-65. · Zbl 1136.91369 · doi:10.1016/j.jet.2007.09.002
[19] Gajdos, T., Tallon, J. M. and Vergnaud, J. C. (2004). Decision making with imprecise probabilistic information., Journal of Mathematical Economics 40 647-681. · Zbl 1106.91022 · doi:10.1016/j.jmateco.2003.06.004
[20] Gärdenfors, P. and Sahlin, N.-E. (1982). Unreliable probabilities, risk taking, and decision making., Synthese 53 361-386. 10.1007/BF00486156. · Zbl 0516.62011 · doi:10.1007/BF00486156
[21] Gilboa, I. and Schmeidler, D. (1989). Maxmin expected utility with non-unique prior., Journal of Mathematical Economics 18 141-153. · Zbl 0675.90012 · doi:10.1016/0304-4068(89)90018-9
[22] Grünwald, P. D. and Dawid, A. P. (2004). Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory., Annals of Statistics 32 1367-1433. · Zbl 1048.62008 · doi:10.1214/009053604000000553
[23] Hannig, J. (2009). On generalized fiducial inference., Statistica Sinica 19 491-544. · Zbl 1168.62004 · www3.stat.sinica.edu.tw
[24] Harremoës, P. (2007). Information topologies with applications. In, Entropy, Search, Complexity , (I. Csiszár, G. O. H. Katona, G. Tardos and G. Wiener, eds.). Bolyai Society Mathematical Studies 16 113-150. Springer Berlin Heidelberg, Berlin, Heidelberg. · doi:10.1007/978-3-540-32777-6_5
[25] Hurwicz, L. (1951a). Optimality criteria for decision making under ignorance., Cowles Commission Discussion Paper 370 .
[26] Hurwicz, L. (1951b). The generalized Bayes-minimax principle: a criterion for decision-making under uncertainty., Cowles Commission Discussion Paper 355 .
[27] Jaffray, J. Y. (1989a). Généralisation du critère de l’utilité espérée aux choix dans l’incertain régulier., RAIRO: Recherche opérationnelle 23 237-267. · Zbl 0678.90012 · eudml:104962
[28] Jaffray, J.-Y. (1989b). Linear utility theory for belief functions., Operations Research Letters 8 107-112. · Zbl 0673.90010 · doi:10.1016/0167-6377(89)90010-2
[29] Jaynes, E. T. (2003)., Probability Theory: The Logic of Science . · Zbl 1045.62001
[30] Kardaun, O. J. W. F., Salomi, D., Schaafsma, W., Steerneman, A. G. M., Willems, J. C. and Cox, D. R. (2003). Reflections on Fourteen Cryptic Issues concerning the Nature of Statistical Inference., International Statistical Review / Revue Internationale de Statistique 71 277-303. · Zbl 1114.62305 · doi:10.1111/j.1751-5823.2003.tb00196.x · euclid:isr/1069172301
[31] Kullback, S. (1968)., Information Theory and Statistics . Dover, New York. · Zbl 0274.62036
[32] Paris, J. B. (1994)., The Uncertain Reasoner’s Companion: A Mathematical Perspective . Cambridge University Press, New York. · Zbl 0838.68104 · doi:10.1017/CBO9780511526596
[33] Pfaffelhuber, E. (1977). Minimax Information Gain and Minimum Discrimination Principle. In, Topics in Information Theory (I. Csiszár and P. Elias, eds.). Colloquia Mathematica Societatis János Bolyai 16 493-519. János Bolyai Mathematical Society and North-Holland. · Zbl 0374.94012
[34] Polansky, A. M. (2007)., Observed Confidence Levels: Theory and Application . Chapman and Hall, New York.
[35] Samaniego, F. J. (2010)., A Comparison of the Bayesian and Frequentist Approaches to Estimation (Springer Series in Statistics) . Springer, New York. · Zbl 1204.62028 · doi:10.1007/978-1-4419-5941-6
[36] Savage, L. J. (1954)., The Foundations of Statistics . John Wiley and Sons, New York. · Zbl 0055.12604
[37] Schweder, T. and Hjort, N. L. (2002). Confidence and likelihood., Scandinavian Journal of Statistics 29 309-332. · Zbl 1017.62026 · doi:10.1111/1467-9469.00285
[38] Sellke, T., Bayarri, M. J. and Berger, J. O. (2001). Calibration of p values for testing precise null hypotheses., American Statistician 55 62-71. · Zbl 1182.62053 · doi:10.1198/000313001300339950
[39] Singh, K., Xie, M. and Strawderman, W. E. (2005). Combining information from independent sources through confidence distributions., Annals of Statistics 33 159-183. · Zbl 1064.62003 · doi:10.1214/009053604000001084
[40] Tapking, J. (2004). Axioms for preferences revealing subjective uncertainty and uncertainty aversion., Journal of Mathematical Economics 40 771-797. · Zbl 1099.91036 · doi:10.1016/j.jmateco.2003.07.004
[41] Topsøe, F. (1979). Information theoretical optimization techniques., Kybernetika 15 8-27. · Zbl 0399.94007 · eudml:27475
[42] Topsøe, F. (2004). Information theory and complexity in probability and statistics. In, Soft Methodology and Random Information Systems (LopezDiaz, M. and Gil, M. A. and Grzegorzewski, P. and Hryniewicz, O. and Lawry, J., ed.). Advances in Soft Computing 363-370. · Zbl 1084.62503
[43] Topsøe, F. (2007). Information Theory at the Service of Science. In, Entropy, Search, Complexity , (I. Csiszár, G. O. H. Katona, G. Tardos and G. Wiener, eds.). Bolyai Society Mathematical Studies 179-207. Springer Berlin Heidelberg. · doi:10.1007/978-3-540-32777-6_8
[44] van Berkum, E. E. M., Linssen, H. N. and Overdijk, D. A. (1996). Inference rules and inferential distributions., Journal of Statistical Planning and Inference 49 305-317. · Zbl 0849.62003 · doi:10.1016/0378-3758(95)00015-1
[45] Vidakovic, B. (2000)., Gamma-minimax: A paradigm for conservative robust Bayesians . Robust Bayesian Analysis 241-260. Springer, New York. · Zbl 1281.62040 · doi:10.1007/978-1-4612-1306-2_13
[46] von Neumann, J. and Morgenstern, O. (1953)., Theory of Games and Economic Behavior . Princeton University Press, Princeton. · Zbl 0053.09303
[47] Wald, A. (1961)., Statistical Decision Functions . John Wiley and Sons, New York. · Zbl 0034.22804
[48] Walley, P. (1991)., Statistical Reasoning with Imprecise Probabilities . Chapman and Hall, London. · Zbl 0732.62004
[49] Weichselberger, K. (2001)., Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung I: Intervallwahrscheinlichkeit als umfassendes Konzept . Physica-Verlag, Heidelberg. · Zbl 0979.60001
[50] Williams, P. M. (1980). Bayesian Conditionalisation and the Principle of Minimum Information., The British Journal for the Philosophy of Science 31 131-144. · doi:10.1093/bjps/31.2.131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.