×

Identifying the consequences of dynamic treatment strategies: a decision-theoretic overview. (English) Zbl 1274.62072

Summary: We consider the problem of learning about and comparing the consequences of dynamic treatment strategies on the basis of observational data. We formulate this within a probabilistic decision-theoretic framework. Our approach is compared with related work by Robins and others: in particular, we show how Robins’s ‘\(G\)-computation’ algorithm arises naturally from this decision-theoretic perspective. Careful attention is paid to the mathematical and substantive conditions required to justify the use of this formula. These conditions revolve around a property we term stability, which relates the probabilistic behaviours of observational and interventional regimes. We show how an assumption of ‘sequential randomization’ (or ‘no unmeasured confounders’), or an alternative assumption of ‘sequential irrelevance’, can be used to infer stability. Probabilistic influence diagrams are used to simplify manipulations, and their power and limitations are discussed. We compare our approach with alternative formulations based on causal DAGs or potential response models. We aim to show that formulating the problem of assessing dynamic treatment strategies as a problem of decision analysis brings clarity, simplicity and generality.

MSC:

62C05 General considerations in statistical decision theory
62A01 Foundations and philosophical topics in statistics

Software:

TETRAD; Separoids; R
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Arjas, E. and Parner, J. (2004). Causal reasoning from longitudinal data., Scandinavian Journal of Statistics 31 171-187. · Zbl 1060.62032
[2] Arjas, E. and Saarela, O. (2010). Optimal dynamic regimes: Presenting a case for predictive inference., The International Journal of Biostatistics 6 .
[3] Cowell, R. G., Dawid, A. P., Lauritzen, S. L. and Spiegelhalter, D. J. (1999)., Probabilistic Networks and Expert Systems . Springer, New York. · Zbl 0937.68121
[4] Dawid, A. P. (1979). Conditional independence in statistical theory (with Discussion)., Journal of the Royal Statistical Society, Series B 41 1-31. JSTOR: · Zbl 0408.62004
[5] Dawid, A. P. (1992). Applications of a general propagation algorithm for probabilistic expert systems., Statistics and Computing 2 25-36.
[6] Dawid, A. P. (1998). Conditional independence. In, Encyclopedia of Statistical Science (Update Volume 2) ( S. Kotz, C. B. Read and D. L. Banks, eds.) 146-155. Wiley-Interscience, New York.
[7] Dawid, A. P. (2000). Causal inference without counterfactuals (with Discussion)., Journal of the American Statistical Association 95 407-448. JSTOR: · Zbl 0999.62003
[8] Dawid, A. P. (2001). Separoids: A mathematical framework for conditional independence and irrelevance., Annals of Mathematics and Artificial Intelligence 32 335-372. · Zbl 1314.68308
[9] Dawid, A. P. (2002). Influence diagrams for causal modelling and inference., International Statistical Review 70 161-189. Corrigenda, ibid ., 437. · Zbl 1215.62002
[10] Dawid, A. P. (2003). Causal inference using influence diagrams: The problem of partial compliance (with Discussion). In, Highly Structured Stochastic Systems ( P. J. Green, N. L. Hjort and S. Richardson, eds.) 45-81. Oxford University Press.
[11] Dawid, A. P. (2010). Beware of the DAG! In, Proceedings of the NIPS 2008 Workshop on Causality. Journal of Machine Learning Research Workshop and Conference Proceedings ( D. Janzing, I. Guyon and B. Schölkopf, eds.) 6 59-86.
[12] Dawid, A. P. and Didelez, V. (2008). Identifying optimal sequential decisions. In, Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI-08) ( D. McAllester and A. Nicholson, eds.). 113-120. AUAI Press, Corvallis, Oregon.
[13] Dechter, R. (2003)., Constraint Processing . Morgan Kaufmann Publishers. · Zbl 1017.68536
[14] Didelez, V., Dawid, A. P. and Geneletti, S. G. (2006). Direct and indirect effects of sequential treatments. In, Proceedings of the Twenty-Second Annual Conference on Uncertainty in Artificial Intelligence (UAI-06) ( R. Dechter and T. Richardson, eds.). 138-146. AUAI Press, Arlington, Virginia.
[15] Didelez, V., Kreiner, S. and Keiding, N. (2010). Graphical models for inference under outcome dependent sampling., Statistical Science (to appear). · Zbl 1329.62042
[16] Didelez, V. and Sheehan, N. S. (2007). Mendelian randomisation: Why epidemiology needs a formal language for causality. In, Causality and Probability in the Sciences , ( F. Russo and J. Williamson, eds.). Texts in Philosophy Series 5 263-292. College Publications, London.
[17] Eichler, M. and Didelez, V. (2010). Granger-causality and the effect of interventions in time series., Lifetime Data Analysis 16 3-32. · Zbl 1322.62063
[18] Ferguson, T. S. (1967)., Mathematical Statistics: A Decision Theoretic Approach . Academic Press, New York, London. · Zbl 0153.47602
[19] Geneletti, S. G. (2007). Identifying direct and indirect effects in a non-counterfactual framework., Journal of the Royal Statistical Society: Series B 69 199-215. · Zbl 1120.62006
[20] Geneletti, S. G. and Dawid, A. P. (2010). Defining and identifying the effect of treatment on the treated. In, Causality in the Sciences ( P. M. Illari, F. Russo and J. Williamson, eds.) Oxford University Press (to appear). · Zbl 1282.62015
[21] Gill, R. D. and Robins, J. M. (2001). Causal inference for complex longitudinal data: The continuous case., Annals of Statistics 29 1785-1811. · Zbl 1043.62094
[22] Guo, H. and Dawid, A. P. (2010). Sufficient covariates and linear propensity analysis. In, Proceedings of the Thirteenth International Workshop on Artificial Intelligence and Statistics, (AISTATS) 2010, Chia Laguna, Sardinia, Italy, May 13-15, 2010. Journal of Machine Learning Research Workshop and Conference Proceedings ( Y. W. Teh and D. M. Titterington, eds.) 9 281-288.
[23] Henderson, R., Ansel, P. and Alshibani, D. (2010). Regret-regression for optimal dynamic treatment regimes., Biometrics (to appear). doi:10.1111/j.1541-0420.2009.01368.x Hernán, M. A. and Taubman, S. L. (2008). Does obesity shorten life? The importance of well defined interventions to answer causal questions., International Journal of Obesity 32 S8-S14.
[24] Holland, P. W. (1986). Statistics and causal inference (with Discussion)., Journal of the American Statistical Association 81 945-970. JSTOR: · Zbl 0607.62001
[25] Huang, Y. and Valtorta, M. (2006). Identifiability in causal Bayesian networks: A sound and complete algorithm. In, AAAI’06: Proceedings of the 21st National Conference on Artificial Intelligence 1149-1154. AAAI Press.
[26] Kang, J. D. Y. and Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data., Statistical Science 22 523-539. · Zbl 1246.62073
[27] Lauritzen, S. L., Dawid, A. P., Larsen, B. N. and Leimer, H. G. (1990). Independence properties of directed Markov fields., Networks 20 491-505. · Zbl 0743.05065
[28] Lok, J., Gill, R., van der Vaart, A. and Robins, J. (2004). Estimating the causal effect of a time-varying treatment on time-to-event using structural nested failure time models., Statistica Neerlandica 58 271-295. · Zbl 1059.62102
[29] Moodie, E. M., Richardson, T. S. and Stephens, D. A. (2007). Demystifying optimal dynamic treatment regimes., Biometrics 63 447-455. · Zbl 1137.62077
[30] Murphy, S. A. (2003). Optimal dynamic treatment regimes (with Discussion)., Journal of the Royal Statistical Society, Series B 65 331-366. JSTOR: · Zbl 1065.62006
[31] Oliver, R. M. and Smith, J. Q., eds. (1990)., Influence Diagrams, Belief Nets and Decision Analysis . John Wiley and Sons, Chichester, United Kingdom.
[32] Pearl, J. (1995). Causal diagrams for empirical research (with Discussion)., Biometrika 82 669-710. JSTOR: · Zbl 0860.62045
[33] Pearl, J. (2009)., Causality: Models, Reasoning and Inference , Second ed. Cambridge University Press, Cambridge. · Zbl 1188.68291
[34] Pearl, J. and Paz, A. (1987). Graphoids: A graph-based logic for reasoning about relevance relations. In, Advances in Artificial Intelligence ( D. Hogg and L. Steels, eds.) II 357-363. North-Holland, Amsterdam.
[35] Pearl, J. and Robins, J. (1995). Probabilistic evaluation of sequential plans from causal models with hidden variables. In, Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence ( P. Besnard and S. Hanks, eds.) 444-453. Morgan Kaufmann Publishers, San Francisco.
[36] Raiffa, H. (1968)., Decision Analysis . Addison-Wesley, Reading, Massachusetts. · Zbl 0181.21802
[37] Robins, J. M. (1986). A new approach to causal inference in mortality studies with sustained exposure periods-Application to control of the healthy worker survivor effect., Mathematical Modelling 7 1393-1512. · Zbl 0614.62136
[38] Robins, J. M. (1987). Addendum to “A new approach to causal inference in mortality studies with sustained exposure periods-Application to control of the healthy worker survivor effect”., Computers & Mathematics with Applications 14 923-945. · Zbl 0643.62062
[39] Robins, J. M. (1989). The analysis of randomized and nonrandomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In, Health Service Research Methodology: A Focus on AIDS ( L. Sechrest, H. Freeman and A. Mulley, eds.) 113-159. NCSHR, U.S. Public Health Service.
[40] Robins, J. M. (1992). Estimation of the time-dependent accelerated failure time model in the presence of confounding factors., Biometrika 79 321-324. JSTOR: · Zbl 0753.62076
[41] Robins, J. M. (1997). Causal inference from complex longitudinal data. In, Latent Variable Modeling and Applications to Causality , ( M. Berkane, ed.). Lecture Notes in Statistics 120 69-117. Springer-Verlag, New York. · Zbl 0969.62072
[42] Robins, J. M. (1998). Structural nested failure time models. In, Survival Analysis , ( P. K. Andersen and N. Keiding, eds.). Encyclopedia of Biostatistics 6 4372-4389. John Wiley and Sons, Chichester, UK.
[43] Robins, J. M. (2000). Robust estimation in sequentially ignorable missing data and causal inference models. In, Proceedings of the American Statistical Association Section on Bayesian Statistical Science 1999 6-10.
[44] Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In, Proceedings of the Second Seattle Symposium on Biostatistics ( D. Y. Lin and P. Heagerty, eds.) 189-326. Springer, New York. · Zbl 1279.62024
[45] Robins, J. M., Greenland, S. and Hu, F. C. (1999). Estimation of the causal effect of a time-varying exposure on the marginal mean of a repeated binary outcome., Journal of the American Statistical Association 94 687-700. JSTOR: · Zbl 1072.62692
[46] Robins, J. M., Hernán, M. A. and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology., Epidemiology 11 550-560. · Zbl 0647.62093
[47] Robins, J. M. and Wasserman, L. A. (1997). Estimation of effects of sequential treatments by reparameterizing directed acyclic graphs. In, Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence ( D. Geiger and P. Shenoy, eds.) 409-420. Morgan Kaufmann Publishers, San Francisco.
[48] Rosthøj, S., Fullwood, C., Henderson, R. and Stewart, S. (2006). Estimation of optimal dynamic anticoagulation regimes from observational data: A regret-based approach., Statistics in Medicine 25 4197-4215.
[49] Shpitser, I. and Pearl, J. (2006a). Identification of conditional interventional distributions. In, Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI-06) ( R. Dechter and T. Richardson, eds.). 437-444. AUAI Press, Corvallis, Oregon.
[50] Shpitser, I. and Pearl, J. (2006b). Identification of joint interventional distributions in recursive semi-Markovian causal models. In, Proceedings of the Twenty-First National Conference on Artificial Intelligence 1219-1226. AAAI Press, Menlo Park, California.
[51] Spirtes, P., Glymour, C. and Scheines, R. (2000)., Causation, Prediction and Search , Second ed. Springer-Verlag, New York. · Zbl 0806.62001
[52] Sterne, J. A. C., May, M., Costagliola, D., de Wolf, F., Phillips, A. N., Harris, R., Funk, M. J., Geskus, R. B., Gill, J., Dabis, F., Miro, J. M., Justice, A. C., Ledergerber, B., Fatkenheuer, G., Hogg, R. S., D’Arminio-Monforte, A., Saag, M., Smith, C., Staszewski, S., Egger, M., Cole, S. R. and When To Start Consortium (2009). Timing of initiation of antiretroviral therapy in AIDS-Free HIV-1-infected patients: A collaborative analysis of 18 HIV cohort studies., Lancet 373 1352-1363.
[53] Taubman, S. L., Robins, J. M., Mittleman, M. A. and Hernán, M. A. (2009). Intervening on risk factors for coronary heart disease: An application of the parametric, g -formula. International Journal of Epidemiology 38 1599-1611.
[54] Tian, J. (2008). Identifying dynamic sequential plans. In, Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI-08) ( D. McAllester and A. Nicholson, eds.). 554-561. AUAI Press, Corvallis, Oregon.
[55] Verma, T. and Pearl, J. (1990). Causal networks: Semantics and expressiveness. In, Uncertainty in Artificial Intelligence 4 ( R. D. Shachter, T. S. Levitt, L. N. Kanal and J. F. Lemmer, eds.) 69-76. North-Holland, Amsterdam.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.