On improved predictive density estimation with parametric constraints. (English) Zbl 1274.62079

Summary: We consider the problem of predictive density estimation for normal models under Kullback-Leibler loss (KL loss) when the parameter space is constrained to a convex set. More particularly, we assume that \(X\sim \mathcal N_p(\mu, v_xI)\) is observed and that we wish to estimate the density of \(Y\sim \mathcal N_p(\mu, v_yI)\) under KL loss when \(\mu \) is restricted to the convex set \(C\subset \mathbb R^{p}\). We show that the best unrestricted invariant predictive density estimator \(\hat p_{U}\) is dominated by the Bayes estimator \(\hat p_{\pi_{C}}\) associated to the uniform prior \(\pi _{C}\) on \(C\). We also study so called plug-in estimators, giving conditions under which domination of one estimator of the mean vector \(\mu \) over another under the usual quadratic loss, translates into a domination result for certain corresponding plug-in density estimators under KL loss. Risk comparisons and domination results are also made for comparisons of plug-in estimators and Bayes predictive density estimators. Additionally, minimaxity and domination results are given for the cases where: (i) \(C\) is a cone, and (ii) \(C\) is a ball.


62C15 Admissibility in statistical decision theory
62C20 Minimax procedures in statistical decision theory
62F10 Point estimation
62H12 Estimation in multivariate analysis
Full Text: DOI Euclid


[1] Aitchison, J. (1975) Goodness of prediction fit., Biometrika , 62 547-554. · Zbl 0339.62018 · doi:10.1093/biomet/62.3.547
[2] Berry, C. (1990) Minimax estimation of a bounded normal mean vector., Journal of Multivariate Analysis , 35 130-139. · Zbl 0705.62052 · doi:10.1016/0047-259X(90)90020-I
[3] Brown, L. D., George, E. I. and Xu, X. (2008) Admissible predictive density estimation., Annals of Statistics , 36 1156-1170. · Zbl 1216.62012 · doi:10.1214/07-AOS506
[4] Casella, G. and Strawderman, W. E. (1981) Estimating a bounded normal mean., Annals of Statistics , 9 870-878. · Zbl 0474.62010 · doi:10.1214/aos/1176345527
[5] Fourdrinier, D. and Marchand, É. (2010) On Bayes estimators with uniform priors on spheres and their comparative performance with maximum likelihood estimators for estimating bounded multivariate normal means., Journal of Multivariate Analysis , 101 1390-1399. · Zbl 1352.62047 · doi:10.1016/j.jmva.2010.01.011
[6] George, E. I., Feng, L. and Xu, X. (2006) Improved minimax predictive densities under Kullback-Leibler loss., Annals of Statistics , 34 78-91. · Zbl 1091.62003 · doi:10.1214/009053606000000155
[7] George, E. I. and Xu, X. (2010) Bayesian predictive density estimation., Frontiers of Statistical Decision Making and Bayesian Analysis. In honor of James O. Berger , 83-95. Springer.
[8] Hartigan, J. A. (2004) Uniform priors on convex sets improve risk., Statistics and Probability Letters , 67 285-288. · Zbl 1041.62021 · doi:10.1016/j.spl.2004.01.009
[9] Kiefer, J. (1957) Invariance, minimax sequential estimation, and continuous time processes., Annals of Mathematical Statistics , 28 573-601. · Zbl 0080.13004 · doi:10.1214/aoms/1177706874
[10] Komaki, F. (2001) A shrinkage predictive distribution for multivariate normal observables., Biometrika , 88 859-864. · Zbl 0985.62024 · doi:10.1093/biomet/88.3.859
[11] Kubokawa, T. (2005) Estimation of bounded location and scale parameters., Journal of the Japanese Statistical Society , 35 221-249.
[12] Liang, F. and Barron, A. (2004) Exact minimax strategies for predictive density estimation, data compression and model selection., IEEE Transactions on Information Theory , 50 2708-2726. · Zbl 1315.94022 · doi:10.1109/TIT.2004.836922
[13] Liang, R. (1986) A note on the measurability of convex sets., Arch. Math , 47 90-92. · Zbl 0607.28003 · doi:10.1007/BF01202504
[14] Marchand,É and Perron, F. (2001) Improving on the mle of a bounded normal mean., Annals of Statistics , 29 1066-1081. · Zbl 1041.62016 · doi:10.1214/aos/1013699994
[15] Marchand,É and Perron, F. (2002) On the minimax estimator of a bounded normal mean., Statistics and Probability Letters , 58 327-333. · Zbl 1056.62036 · doi:10.1016/S0167-7152(02)00089-5
[16] Marchand,É and Strawderman, W. E. (2010) A unified minimax result for restricted parameter spaces., Bernoulli , · Zbl 1251.49024
[17] Murray, G. D. (1977) A note on the estimation of probability density functions., Biometrika , 64 150-152. · Zbl 0347.62035 · doi:10.2307/2335788
[18] Ng, V. M. (1980) On the estimation of parametric density functions., Biometrika , 67 505-506. · Zbl 0451.62006 · doi:10.1093/biomet/67.2.505
[19] Rockafellar, R. T. (1996), Convex Analysis . Princeton University Press. · Zbl 0878.49012
[20] Tsukuma, H. and Kubokawa, T. (2008) Stein’s phenomenon in estimation of means restricted to a polyhedral convex cone., Journal of Multivariate Analysis , 99 141-164. · Zbl 1139.62002 · doi:10.1016/j.jmva.2006.10.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.