×

zbMATH — the first resource for mathematics

Noisy matrix decomposition via convex relaxation: optimal rates in high dimensions. (English) Zbl 1274.62219
Summary: We analyze a class of estimators based on convex relaxation for solving high-dimensional matrix decomposition problems. The observations are noisy realizations of a linear transformation \(\mathfrak{X}\) of the sum of an (approximately) low rank matrix \(\Theta^{\star}\) with a second matrix \(\Gamma^{\star}\) endowed with a complementary form of low-dimensional structure; this set-up includes many statistical models of interest, including factor analysis, multi-task regression and robust covariance estimation. We derive a general theorem that bounds the Frobenius norm error for an estimate of the pair \((\Theta^{\star},\Gamma^{\star})\) obtained by solving a convex optimization problem that combines the nuclear norm with a general decomposable regularizer. Our results use a “spikiness” condition that is related to, but milder than, singular vector incoherence. We specialize our general result to two cases that have been studied in past work: low rank plus an entrywise sparse matrix, and low rank plus a columnwise sparse matrix. For both models, our theory yields nonasymptotic Frobenius error bounds for both deterministic and stochastic noise matrices, and applies to matrices \(\Theta^{\star}\) that can be exactly or approximately low rank, and matrices \(\Gamma^{\star}\) that can be exactly or approximately sparse. Moreover, for the case of stochastic noise matrices and the identity observation operator, we establish matching lower bounds on the minimax error. The sharpness of our nonasymptotic predictions is confirmed by numerical simulations.

MSC:
62F30 Parametric inference under constraints
62H12 Estimation in multivariate analysis
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Agarwal, A., Negahban, S. and Wainwright, M. J. (2012). Supplement to “Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions.” . · Zbl 1274.62219
[2] Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis , 3rd ed. Wiley, Hoboken, NJ. · Zbl 1039.62044
[3] Ando, R. K. and Zhang, T. (2005). A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 6 1817-1853. · Zbl 1222.68133
[4] Blitzer, J., Foster, D. P. and Kakade, S. M. (2009). Zero-shot domain adaptation: A multi-view approach. Technical report, Toyota Technological Institute at Chicago.
[5] Blitzer, J., Mcdonald, R. and Pereira, F. (2006). Domain adaptation with structural correspondence learning. In EMNLP Conference , Sydney , Australia .
[6] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization . Cambridge Univ. Press, Cambridge. · Zbl 1058.90049
[7] Candès, E. J., Li, X., Ma, Y. and Wright, J. (2011). Robust principal component analysis? J. ACM 58 Art. 11, 37. · Zbl 1327.62369
[8] Chandrasekaran, V., Parillo, P. A. and Willsky, A. S. (2010). Latent variable graphical model selection via convex optimization. Technical report, Massachusetts Institute of Technology.
[9] Chandrasekaran, V., Sanghavi, S., Parrilo, P. A. and Willsky, A. S. (2011). Rank-sparsity incoherence for matrix decomposition. SIAM J. Optim. 21 572-596. · Zbl 1226.90067
[10] Fan, J., Liao, Y. and Mincheva, M. (2012). Large covariance estimation by thresholding principal orthogonal components. Technical report, Princeton Univ. Available at .
[11] Hsu, D., Kakade, S. M. and Zhang, T. (2011). Robust matrix decomposition with sparse corruptions. IEEE Trans. Inform. Theory 57 7221-7234. · Zbl 1365.15018
[12] Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295-327. · Zbl 1016.62078
[13] McCoy, M. and Tropp, J. A. (2011). Two proposals for robust PCA using semidefinite programming. Electron. J. Stat. 5 1123-1160. · Zbl 1329.62276
[14] Negahban, S., Ravikumar, P., Wainwright, M. J. and Yu, B. (2009). A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. In NIPS Conference , Vancouver, Canada, December 2009. Full length version available at . Statist. Sci. · Zbl 1331.62350
[15] Negahban, S. and Wainwright, M. J. (2011). Estimation of (near) low-rank matrices with noise and high-dimensional scaling. Ann. Statist. 39 1069-1097. · Zbl 1216.62090
[16] Negahban, S. and Wainwright, M. J. (2012). Restricted strong convexity and (weighted) matrix completion: Optimal bounds with noise. J. Mach. Learn. Res. 13 1665-1697. · Zbl 1436.62204
[17] Raskutti, G., Wainwright, M. J. and Yu, B. (2011). Minimax rates of estimation for high-dimensional linear regression over \(\ell_q\)-balls. IEEE Trans. Inform. Theory 57 6976-6994. · Zbl 1365.62276
[18] Recht, B., Fazel, M. and Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52 471-501. · Zbl 1198.90321
[19] Rockafellar, R. T. (1970). Convex Analysis. Princeton Mathematical Series 28 . Princeton Univ. Press, Princeton, NJ. · Zbl 0193.18401
[20] Rohde, A. and Tsybakov, A. B. (2011). Estimation of high-dimensional low-rank matrices. Ann. Statist. 39 887-930. · Zbl 1215.62056
[21] Xu, H., Caramanis, C. and Sanghavi, S. (2010). Robust PCA via outlier pursuit. Technical report, Univ. Texas, Austin. Available at . · Zbl 1365.62228
[22] Yuan, M., Ekici, A., Lu, Z. and Monteiro, R. (2007). Dimension reduction and coefficient estimation in multivariate linear regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 329-346.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.