×

Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors. (English) Zbl 1274.62244

Summary: This paper considers nonparametric regression models with long memory errors and predictors. Unlike in weak dependence situations, we show that the estimation of the conditional mean has influence on the estimation of both, the conditional variance and the error density. In particular, the estimation of the conditional mean has a negative effect on the asymptotic behaviour of the conditional variance estimator. On the other hand, surprisingly, estimation of the conditional mean may reduce convergence rates of the residual-based Parzen-Rosenblatt density estimator, as compared to the errors-based one. Our asymptotic results reveal small/large bandwidth dichotomous behaviour. In particular, we present a method which guarantees that a chosen bandwidth implies standard weakly dependent-type asymptotics. Our results are confirmed by an extensive simulation study. Furthermore, our theoretical lemmas may be used in different problems related to nonparametric regression with long memory, like cross-validation properties, bootstrap, goodness-of-fit or quadratic forms.

MSC:

62G05 Nonparametric estimation
62G08 Nonparametric regression and quantile regression
62E20 Asymptotic distribution theory in statistics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Florin Avram and Murad S. Taqqu. Noncentral limit theorems and Appell polynomials., Ann. Probab. , 15(2):767-775, 1987. · Zbl 0624.60049 · doi:10.1214/aop/1176992170
[2] J. Beran and Y. Feng. Local polynomial estimation with a FARIMA-GARCH error process., Bernoulli , 7(5):733-750, 2001. · Zbl 0985.62033 · doi:10.2307/3318539
[3] T. Tony Cai and Lie Wang. Adaptive variance function estimation in heteroscedastic nonparametric regression., Ann. Statist. , 36(5) :2025-2054, 2008. · Zbl 1148.62021 · doi:10.1214/07-AOS509
[4] Ngai Hang Chan and Shiqing Ling. Residual empirical processes for long and short memory time series., Ann. Statist. , 36(5) :2453-2470, 2008. · Zbl 1205.62128 · doi:10.1214/07-AOS543
[5] Bing Cheng and P. M. Robinson. Density estimation in strongly dependent nonlinear time series., Statist. Sinica , 1(2):335-359, 1991. · Zbl 0823.62031
[6] Fuxia Cheng. Asymptotic distributions of error density and distribution function estimators in nonparametric regression., J. Statist. Plann. Inference , 128(2):327-349, 2005. · Zbl 1089.62041 · doi:10.1016/j.jspi.2003.12.004
[7] Sándor Csörgő and Jan Mielniczuk. Random-design regression under long-range dependent errors., Bernoulli , 5(2):209-224, 1999. · Zbl 0946.62084 · doi:10.2307/3318432
[8] Sándor Csörgő and Jan Mielniczuk. The smoothing dichotomy in random-design regression with long-memory errors based on moving averages., Statist. Sinica , 10(3):771-787, 2000. · Zbl 1053.62553
[9] Sam Efromovich. Estimation of the density of regression errors., Ann. Statist. , 33(5) :2194-2227, 2005. · Zbl 1086.62053 · doi:10.1214/009053605000000435
[10] Jianqing Fan and Qiwei Yao. Efficient estimation of conditional variance functions in stochastic regression., Biometrika , 85(3):645-660, 1998. · Zbl 0918.62065 · doi:10.1093/biomet/85.3.645
[11] Jianqing Fan and Qiwei Yao., Nonlinear time series . Springer Series in Statistics. Springer-Verlag, New York, 2003. Nonparametric and parametric methods. · Zbl 1014.62103
[12] C. Fraley, F. Leisch, and M. Maechler. fracdiff:, Fractionally differenced ARIMA aka ARFIMA(p,d,q) models , 2006. R package version 1.3-1.
[13] Jiti Gao and Qiying Wang. Long-range dependent time series specification., 2009. · Zbl 1280.62105
[14] Liudas Giraitis and Donatas Surgailis. Central limit theorem for the empirical process of a linear sequence with long memory., J. Statist. Plann. Inference , 80(1-2):81-93, 1999. · Zbl 0943.60035 · doi:10.1016/S0378-3758(98)00243-2
[15] Hongwen Guo and Hira L. Koul. Asymptotic inference in some heteroscedastic regression models with long memory design and errors., Ann. Statist. , 36(1):458-487, 2008. · Zbl 1132.62066 · doi:10.1214/009053607000000686
[16] Peter Hall, Soumendra Nath Lahiri, and Jörg Polzehl. On bandwidth choice in nonparametric regression with both short- and long-range dependent errors., Ann. Statist. , 23(6) :1921-1936, 1995. · Zbl 0856.62041 · doi:10.1214/aos/1034713640
[17] Peter Hall, Soumendra Nath Lahiri, and Young K. Truong. On bandwidth choice for density estimation with dependent data., Ann. Statist. , 23(6) :2241-2263, 1995. · Zbl 0854.62039 · doi:10.1214/aos/1034713655
[18] Hwai-Chung Ho and Tailen Hsing. On the asymptotic expansion of the empirical process of long-memory moving averages., Ann. Statist. , 24(3):992 -1024, 1996. · Zbl 0862.60026 · doi:10.1214/aos/1032526953
[19] Hwai-Chung Ho and Tailen Hsing. Limit theorems for functionals of moving averages., Ann. Probab. , 25(4) :1636-1669, 1997. · Zbl 0903.60018 · doi:10.1214/aop/1023481106
[20] Hira Koul., Weighted Empirical and Residual Processes in Dynamical Nonlinear Models . Springer Series in Statistics. Springer-Verlag, New York, 2002. · Zbl 1007.62047 · doi:10.1007/978-1-4613-0055-7
[21] Hira L. Koul and Donatas Surgailis. Goodness-of-fit testing under long memory., J. Statist. Plann. Inference , 140(12) :3742-3753, 2010. · Zbl 1233.62152 · doi:10.1016/j.jspi.2010.04.039
[22] Rafał Kulik. Nonparametric deconvolution problem for dependent sequences., Electron. J. Statist. , 2:722-740, 2008. · Zbl 1320.62073 · doi:10.1214/07-EJS154
[23] Rafal Kulik. Empirical process of long-range dependent sequences when parameters are estimated., J. Statist. Plann. Inference , 139(2):287-294, 2009. · Zbl 1149.62324 · doi:10.1016/j.jspi.2008.05.002
[24] Rafal Kulik and Pawel Lorek. Empirical process of residuals for regression models with long memory errors., Preprint , 2010.
[25] Rafal Kulik and Pawel Lorek. Some results on random design regression with long memory errors and predictors., J. Statist. Plann. Inference , 141(1):508-523, 2011. · Zbl 1197.62037 · doi:10.1016/j.jspi.2010.06.030
[26] Rafal Kulik and Cornelia Wichelhaus. Conditional variance estimation in regression models with long memory., 2010. · Zbl 1301.62042
[27] S. N. Lahiri., Resampling methods for dependent data . Springer Series in Statistics. Springer-Verlag, New York, 2003. · Zbl 1028.62002
[28] Han-Ying Liang and Si-Li Niu. Asymptotic properties of error density estimator in regression model under, \alpha -mixing assumptions. Comm. Statist. Theory Methods , 38(6-7):761-783, 2009. · Zbl 1162.62030 · doi:10.1080/03610920802306741
[29] Jan Mielniczuk and Wei Biao Wu. On random-design model with dependent errors., Statist. Sinica , 14(4) :1105-1126, 2004. · Zbl 1060.62046
[30] Ursula U. Müller, Anton Schick, and Wolfgang Wefelmeyer. Estimating the error distribution function in semiparametric regression., Statist. Decisions , 25(1):1-18, 2007. · Zbl 1137.62023 · doi:10.1524/stnd.2007.25.1.1
[31] Ursula U. Müller, Anton Schick, and Wolfgang Wefelmeyer. Estimating the error distribution function in nonparametric regression with multivariate covariates., Statist. Probab. Lett. , 79(7):957-964, 2009. · Zbl 1158.62032 · doi:10.1016/j.spl.2008.11.024
[32] Natalie Neumeyer and Ingrid Van Keilegom. Estimating the error distribution in nonparametric multiple regression with applications to model testing., J. Multivariate Anal. , 101(5) :1067-1078, 2010. · Zbl 1185.62078 · doi:10.1016/j.jmva.2010.01.007
[33] D. Ruppert, S. J. Sheather, and M. P. Wand. An effective bandwidth selector for local least squares regression., J. Amer. Statist. Assoc. , 90(432) :1257-1270, 1995. · Zbl 0868.62034 · doi:10.2307/2291516
[34] Murad S. Taqqu. Weak convergence to fractional Brownian motion and to the Rosenblatt process., Z. Wahrscheinlichkeitstheorie und Verw. Gebiete , 31:287-302, 1974/75. · Zbl 0303.60033 · doi:10.1007/BF00532868
[35] Lie Wang, Lawrence D. Brown, T. Tony Cai, and Michael Levine. Effect of mean on variance function estimation in nonparametric regression., Ann. Statist. , 36(2):646-664, 2008. · Zbl 1133.62033 · doi:10.1214/009053607000000901
[36] Wei Biao Wu and Jan Mielniczuk. Kernel density estimation for linear processes., Ann. Statist. , 30(5) :1441-1459, 2002. · Zbl 1015.62034 · doi:10.1214/aos/1035844982
[37] Zhibiao Zhao and Wei Biao Wu. Confidence bands in nonparametric time series regression., Ann. Statist. , 36(4) :1854-1878, 2008. · Zbl 1142.62346 · doi:10.1214/07-AOS533
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.