Pensky, Marianna; Sapatinas, Theofanis Functional deconvolution in a periodic setting: uniform case. (English) Zbl 1274.62253 Ann. Stat. 37, No. 1, 73-104 (2009). Summary: We extend deconvolution in a periodic setting to deal with functional data. The resulting functional deconvolution model can be viewed as a generalization of a multitude of inverse problems in mathematical physics where one needs to recover initial or boundary conditions on the basis of observations from a noisy solution of a partial differential equation. In the case when it is observed at a finite number of distinct points, the proposed functional deconvolution model can also be viewed as a multichannel deconvolution model. We derive minimax lower bounds for the \(L^{2}\)-risk in the proposed functional deconvolution model when \(f(\cdot )\) is assumed to belong to a Besov ball and the blurring function is assumed to possess some smoothness properties, including both regular-smooth and super-smooth convolutions. Furthermore, we propose an adaptive wavelet estimator of \(f(\cdot )\) that is asymptotically optimal (in the minimax sense), or near-optimal within a logarithmic factor, in a wide range of Besov balls. In addition, we consider a discretization of the proposed functional deconvolution model and investigate when the availability of continuous data gives advantages over observations at the asymptotically large number of points. As an illustration, we discuss particular examples for both continuous and discrete settings. Cited in 1 ReviewCited in 25 Documents MSC: 62G05 Nonparametric estimation 62G08 Nonparametric regression and quantile regression 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation 35K05 Heat equation 35L05 Wave equation Keywords:adaptivity; Besov spaces; block thresholding; deconvolution; Fourier analysis; functional data; Meyer wavelets; minimax estimators; multichannel deconvolution; partial differential equations; wavelet analysis Software:ForWaRD × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Abramovich, F. and Silverman, B. W. (1998). Wavelet decomposition approaches to statistical inverse problems. Biometrika 85 115-129. JSTOR: · Zbl 0908.62095 · doi:10.1093/biomet/85.1.115 [2] Casey, S. D. and Walnut, D. F. (1994). Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms. SIAM Rev. 36 537-577. JSTOR: · Zbl 0814.45001 · doi:10.1137/1036140 [3] Chesneau, C. (2008). Wavelet estimation via block thresholding: A minimax study under L p -risk. Statist. Sinica 18 1007-1024. · Zbl 1534.62034 [4] Cirelson, B. S., Ibragimov, I. A. and Sudakov, V. N. (1976). Norm of Gaussian sample function. In Proceedings of the 3rd Japan-U.S.S.R. Symposium on Probability Theory. Lecture Notes in Math. 550 20-41. Springer, Berlin. · Zbl 0359.60019 [5] De Canditiis, D. and Pensky, M. (2004). Discussion on the meeting on “Statistical approaches to inverse problems.” J. Roy. Statist. Soc. Ser. B 66 638-640. [6] De Canditiis, D. and Pensky, M. (2006). Simultaneous wavelet deconvolution in periodic setting. Scand. J. Statist. 33 293-306. · Zbl 1124.62019 · doi:10.1111/j.1467-9469.2006.00463.x [7] Donoho, D. L. (1995). Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Appl. Computat. Harmon. Anal. 2 101-126. · Zbl 0826.65117 · doi:10.1006/acha.1995.1008 [8] Donoho, D. L. and Raimondo, M. (2004). Translation invariant deconvolution in a periodic setting. Internat. J. Wavelets, Multiresolution and Information Processing 14 415-432. · Zbl 1071.62088 · doi:10.1142/S0219691304000640 [9] Dozzi, M. (1989). Stochastic Processes with a Multidimensional Parameter . Longman, New York. · Zbl 0663.60039 [10] Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problem. Ann. Statist. 19 1257-1272. · Zbl 0729.62033 · doi:10.1214/aos/1176348248 [11] Fan, J. and Koo, J. (2002). Wavelet deconvolution. IEEE Trans. Inform. Theory 48 734-747. · Zbl 1071.94511 · doi:10.1109/18.986021 [12] Golubev, G. (2004). The principle of penalized empirical risk in severely ill-posed problems. Probab. Theory Related Filelds 130 18-38. · Zbl 1064.62011 · doi:10.1007/s00440-004-0362-y [13] Golubev, G. K. and Khasminskii, R. Z. (1999). A statistical approach to some inverse problems for partial differential equations. Problems Inform. Transmission 35 136-149. · Zbl 0947.35174 [14] Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998). Wavelets, Approximation, and Statistical Applications. Lecture Notes in Statist. 129 . Springer, New York. · Zbl 0899.62002 [15] Harsdorf, S. and Reuter, R. (2000). Stable deconvolution of noisy lidar signals. In Proceedings of EARSeL-SIG-Workshop LIDAR , Dresden/FRG, June 16-17. [16] Hesse, C. H. (2007). The heat equation with initial data corrupted by measurement error and missing data. Statist. Inference Stochastic Processes 10 75-95. · Zbl 1119.35023 · doi:10.1007/s11203-005-1762-z [17] Johnstone, I. M. (2002). Function estimation in Gaussian noise: sequence models. Unpublished Monograph. Available at http://www-stat.stanford.edu/ imj/. [18] Johnstone, I. M., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004). Wavelet deconvolution in a periodic setting (with discussion). J. Roy. Statist. Soc. Ser. B 66 547-573. JSTOR: · Zbl 1046.62039 · doi:10.1111/j.1467-9868.2004.02056.x [19] Johnstone, I. M. and Raimondo, M. (2004). Periodic boxcar deconvolution and Diophantine approximation. Ann. Statist. 32 1781-1804. · Zbl 1056.62044 · doi:10.1214/009053604000000391 [20] Kalifa, J. and Mallat, S. (2003). Thresholding estimators for linear inverse problems and deconvolutions. Ann. Statist. 31 58-109. · Zbl 1102.62318 · doi:10.1214/aos/1046294458 [21] Kerkyacharian, G., Picard, D. and Raimondo, M. (2007). Adaptive boxcar deconvolution on full Lebesgue measure sets. Statist. Sinica 7 317-340. · Zbl 1145.62066 [22] Kolaczyk, E. D. (1994). Wavelet methods for the inversion of certain homogeneous linear operators in the presence of noisy data. Ph.D. dissertation, Dept. Statistics, Stanford Univ. [23] Lattes, R. and Lions, J. L. (1967). Methode de Quasi-Reversibilite et Applications. Travoux et Recherche Mathematiques 15 . Dunod, Paris. · Zbl 0159.20803 [24] Mallat, S. G. (1999). A Wavelet Tour of Signal Processing , 2nd ed. Academic Press, San Diego. · Zbl 0998.94510 [25] Meyer, Y. (1992). Wavelets and Operators . Cambridge Univ. Press. · Zbl 0776.42019 [26] Neelamani, R., Choi, H. and Baraniuk, R. (2004). Forward: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. Signal Processing 52 418-433. · Zbl 1369.94238 · doi:10.1109/TSP.2003.821103 [27] Park, Y. J., Dho, S. W. and Kong, H. J. (1997). Deconvolution of long-pulse lidar signals with matrix formulation. Applied Optics 36 5158-5161. [28] Pensky, M. and Vidakovic, B. (1999). Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Statist. 27 2033-2053. · Zbl 0962.62030 · doi:10.1214/aos/1017939249 [29] Pensky, M. and Zayed, A. I. (2002). Density deconvolution of different conditional densities. Ann. Instit. Statist. Math. 54 701-712. · Zbl 1014.62042 · doi:10.1023/A:1022435832605 [30] Schmidt, W. (1980). Diophantine Approximation. >Lecture Notes in Math. 785 . Springer, Berlin. · Zbl 0421.10019 [31] Strauss, W. A. (1992). Partial Differential Equations: An Introduction . Wiley, New York. · Zbl 0817.35001 [32] Walter, G. and Shen, X. (1999). Deconvolution using Meyer wavelets. J. Integral Equations and Applications 11 515-534. · Zbl 0978.65122 · doi:10.1216/jiea/1181074297 [33] Willer, T. (2005). Deconvolution in white noise with a random blurring function. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.