Multichannel boxcar deconvolution with growing number of channels. (English) Zbl 1274.62254

Summary: We consider the problem of estimating the unknown response function in the multichannel deconvolution model with a boxcar-like kernel which is of particular interest in signal processing. It is known that, when the number of channels is finite, the precision of reconstruction of the response function increases as the number of channels \(M\) grow (even when the total number of observations \(n\) for all channels \(M\) remains constant) and this requires that the parameter of the channels form a badly approximable \(M\)-tuple.
Recent advances in data collection and recording techniques made it of urgent interest to study the case when the number of channels \(M=M_{n}\) grow with the total number of observations \(n\). However, in real-life situations, the number of channels \(M=M_{n}\) usually refers to the number of physical devices and, consequently, may grow to infinity only at a slow rate as \(n\rightarrow \infty \). Unfortunately, existing theoretical results cannot be blindly applied to accommodate the case when \(M=M_{n}\rightarrow \infty \) as \(n\rightarrow \infty \). This is due to the fact that, to the best of our knowledge, so far no one have studied the construction of a badly approximable \(M\)-tuple of a growing length on a specified interval, of a non-asymptotic length, of the real line, as \(M\) is growing. Therefore, this generalization requires non-trivial results in number theory.
When \(M=M_{n}\) grows slowly as \(n\) increases, we develop a procedure for the construction of a badly approximable \(M\)-tuple on a specified interval, of a non-asymptotic length, together with a lower bound associated with this \(M\)-tuple, which explicitly shows its dependence on \(M\) as \(M\) is growing. This result is further used for the evaluation of the \(L^{2}\)-risk of the suggested adaptive wavelet thresholding estimator of the unknown response function and, furthermore, for the choice of the optimal number of channels \(M\) which minimizes the \(L^{2}\)-risk.


62G05 Nonparametric estimation
62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
11K60 Diophantine approximation in probabilistic number theory
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems


Full Text: DOI arXiv Euclid


[1] Abramovich, F. and Silverman, B.W. (1998). Wavelet decomposition approaches to statistical inverse problems., Biometrika 85 115-129. · Zbl 0908.62095 · doi:10.1093/biomet/85.1.115
[2] Casey, S.D. and Walnut, D.F. (1994). Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms., SIAM Review 36 537-577. · Zbl 0814.45001 · doi:10.1137/1036140
[3] Cassels, J.W.S. (1955). Simultaneous Diophantine approximation II., Proceedings of the London Mathematical Society 5 435-448. · Zbl 0065.28302 · doi:10.1112/plms/s3-5.4.435
[4] Cavalier, L. and Raimondo, M. (2007). Wavelet deconvolution with noisy eigenvalues., IEEE Transactions on Signal Processing 55 2414-2424. · Zbl 1391.94160 · doi:10.1109/TSP.2007.893754
[5] Chesneau, C. (2008). Wavelet estimation via block thresholding: a minimax study under, L p -risk. Statistica Sinica 18 1007-1024. · Zbl 05361942
[6] Davenport, H. (1962). A note on Diophantine approximation. In, Studies in Mathematical Analysis and Related Topics , (Eds. G. Szegö et al. ), pp. 77-81, Stanford University Press, Stanford. · Zbl 0122.05903 · doi:10.1112/S0025579300003478
[7] De Canditiis, D. and Pensky, M. (2004). Discussion on the meeting on “Statistical Approaches to Inverse Problems”., Journal of the Royal Statistical Society , Series B 66 638-640.
[8] De Canditiis, D. and Pensky, M. (2006). Simultaneous wavelet deconvolution in periodic setting., Scandinavian Journal of Statistics 33 293-306. · Zbl 1124.62019 · doi:10.1111/j.1467-9469.2006.00463.x
[9] Donoho, D.L. (1995). Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition., Applied and Computational Harmonic Analysis 2 101-126. · Zbl 0826.65117 · doi:10.1006/acha.1995.1008
[10] Donoho, D.L. and Raimondo, M. (2004). Translation invariant deconvolution in a periodic setting., International Journal of Wavelets, Multiresolution and Information Processing 14 415-432. · Zbl 1071.62088 · doi:10.1142/S0219691304000640
[11] Edixhoven, B. and Evertse, J.-H. (1993)., Diophantine Approximation and Abelian Varieties. Lecture Notes in Mathematics, Vol. 1566 , Springer-Verlag, Berlin. · Zbl 0811.14019
[12] Gradshtein, I.S. and Ryzhik, I.M. (1980)., Tables of Integrals, Series, and Products. Academic Press, New York.
[13] Harsdorf, S. and Reuter, R. (2000). Stable deconvolution of noisy lidar signals. In, Proceedings of EARSeL-SIG-Workshop LIDAR , Dresden/FRG, June 16-17.
[14] Johnstone, I.M. (2002)., Function Estimation in Gaussian Noise: Sequence Models. Unpublished Monograph. ( )
[15] Johnstone, I.M., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004) Wavelet deconvolution in a periodic setting., Journal of the Royal Statistical Society , Series B 66 547-573 (with discussion, 627-657). · Zbl 1046.62039 · doi:10.1111/j.1467-9868.2004.02056.x
[16] Johnstone, I.M. and Raimondo, M. (2004). Periodic boxcar deconvolution and Diophantine approximation., Annals of Statistics 32 1781-1804. · Zbl 1056.62044 · doi:10.1214/009053604000000391
[17] Kalifa, J. and Mallat, S. (2003). Thresholding estimators for linear inverse problems and deconvolutions., Annals of Statistics 31 58-109. · Zbl 1102.62318 · doi:10.1214/aos/1046294458
[18] Kerkyacharian, G., Picard, D. and Raimondo, M. (2007). Adaptive boxcar deconvolution on full Lebesgue measure sets., Statistica Sinica 7 317-340. · Zbl 1145.62066
[19] Lang, S. (1966), Introduction to Diophantine Approximations . Springer-Verlag, New York. · Zbl 0144.04005
[20] Mallat, S.G. (1999)., A Wavelet Tour of Signal Processing , 2nd Edition, Academic Press, San Diego. · Zbl 0998.94510
[21] Masser, D., Nesterenko, Yu.V., Schlickewei, H.P., Schmidt, W.M. and Waldschmidt, M. (2003)., Diophantine Approximation . Lecture Notes in Mathematics, Vol. 1819 , Springer-Verlag, Berlin.
[22] Meyer, Y. (1992)., Wavelets and Operators . Cambridge University Press, Cambridge. · Zbl 0776.42019
[23] Neelamani, R., Choi, H. and Baraniuk, R. (2004). Forward: Fourier-wavelet regularized deconvolution for ill-conditioned systems., IEEE Transactions on Signal Processing 52 418-433. · Zbl 1369.94238 · doi:10.1109/TSP.2003.821103
[24] Park, Y.J., Dho, S.W. and Kong, H.J. (1997). Deconvolution of long-pulse lidar signals with matrix formulation., Applied Optics 36 5158-5161.
[25] Pensky, M. and Sapatinas, T. (2009). Functional deconvolution in a periodic case: uniform case., Annals of Statistics 37 73-104. · Zbl 1274.62253 · doi:10.1214/07-AOS552
[26] Pensky, M. and Sapatinas, T. (2010). On convergence rates equivalency and sampling strategies in functional deconvolution models., Annals of Statistics 38 1793-1844. · Zbl 1352.62050 · doi:10.1214/09-AOS767
[27] Schmidt, W. (1969). Badly approximable systems of linear forms., Journal of Number Theory 1 139-154. · Zbl 0172.06401 · doi:10.1016/0022-314X(69)90032-8
[28] Schmidt, W. (1980)., Diophantine Approximation . Lecture Notes in Mathematics, Vol. 785 , Springer-Verlag, Berlin. · Zbl 0421.10019
[29] Schmidt, W. (1991)., Diophantine Approximations and Diophantine Equations . Lecture Notes in Mathematics, Vol. 1467 , Springer-Verlag, Berlin. · Zbl 0754.11020 · doi:10.1007/BFb0098246
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.