Kernel regression with functional response. (English) Zbl 1274.62281

Summary: We consider kernel regression estimate when both the response variable and the explanatory one are functional. The rates of uniform almost complete convergence are stated as function of the small ball probability of the predictor and as function of the entropy of the set on which uniformity is obtained.


62G08 Nonparametric regression and quantile regression


fda (R)
Full Text: DOI Euclid


[1] Barrientos-Marin, J., Ferraty, F. and Vieu, P. (2010). Locally modelled regression and functional data., J. Nonparametr. Stat. , 22 617-632. · Zbl 1327.62191 · doi:10.1080/10485250903089930
[2] Bosq, D. (2000)., Linear processs in function spaces. Theory and Application. Lectures Notes in Statistics , Vol 149. Springer-Verlag. · Zbl 0962.60004 · doi:10.1007/978-1-4612-1154-9
[3] Bosq, D. and Delecroix, M. (1985). Nonparametric prediction of a Hilbert-space valued random variable., Stochastic Process. Appl. , 19 271-280. · Zbl 0601.62119 · doi:10.1016/0304-4149(85)90029-8
[4] Ferraty, F., Laksaci, A., Tadj, A. and Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables., J. Statist. Plann. Inference , 140 335-352. · Zbl 1177.62044 · doi:10.1016/j.jspi.2009.07.019
[5] Ferraty, F. and Romain, Y. (2011)., The Oxford Handbook of Functional Data Analysis . Oxford University Press. · Zbl 1284.62001
[6] Ferraty, F. and Vieu, P. (2002). The functional nonparametric model and application to spectrometric data., Comput. Statist. , 17 545-564. · Zbl 1037.62032 · doi:10.1007/s001800200126
[7] Ferraty, F. and Vieu, P. (2006)., Nonparametric functional data analysis. Theory and Practice . Springer-Verlag. · Zbl 1119.62046 · doi:10.1007/0-387-36620-2
[8] Ferraty, F. and Vieu, P. (2011). Kernel regression estimation for functional data. In, The Oxford Handbook of Functional Data Analysis (Ed. F. Ferraty and Y. Romain) . Oxford University Press. · Zbl 1049.62039
[9] He, G., Müller, H.G., Wang, J.L. and Yang, W. (2009). Functional Linear Regression Via Canonical Analysis., Bernoulli , 16 705-729. · Zbl 1220.62076 · doi:10.3150/09-BEJ228
[10] Hlubinka, D. and Prchal, L. (2007). Changes in atmospheric radiation from the statistical point of view., Comput. Statist. Data Anal. , 51 (10) 4926-4941. · Zbl 1162.62442 · doi:10.1016/j.csda.2006.07.030
[11] Lecoutre, J.P. (1990). Uniform consistency of a class of regression function estimators for Banach-space valued random variable., Statist. Probab. Lett. , 10 145-149. · Zbl 0699.62039 · doi:10.1016/0167-7152(90)90010-5
[12] Loève, M. (1963)., Probability Theory , 3rd ed. Van Nostranr Princeton.
[13] Müller, H.G., Chiou, J.M. and Leng, X. (2008). Infering gene expression dynamics via functional regression analysis., BMC Bioinformatics , 9 , 60.
[14] Ramsay, J. O. and Silverman, B. W. (2005)., Functional Data Analysis , 2nd ed. Springer, New-York. · Zbl 1079.62006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.