×

Estimation and detection of functions from anisotropic Sobolev classes. (English) Zbl 1274.62319

Summary: We consider the problems of estimating and detecting an unknown function \(f\) depending on a multidimensional variable (for instance, an image) observed in the Gaussian white noise. It is assumed that \(f\) belongs to anisotropic Sobolev class. The case of a function of infinitely many variables is also considered. An asymptotic study (as the noise level tends to zero) of the estimation and detection problems is done. In connection with the estimation problem, we construct asymptotically minimax estimators and establish sharp asymptotics for the minimax integrated squared risk. In the detection problem, we construct asymptotically minimax tests and provide conditions for distinguishability in the problem.

MSC:

62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Efromovich, S. (1999), Nonparametric Curve Estimation: Methods, Theory and Applications , Springer, New York. · Zbl 0935.62039
[2] Ermakov, M. S. (1991), Minimax detection of a signal in Gaussian white noise, Theory of Probability and Its Applications 35 (4), 667-679. · Zbl 0744.62117 · doi:10.1137/1135098
[3] Fichtengoltz, G. M. (1977), Differential- und Integralrechnung , Vol. III, VEB Deutscher Verlag der Wissenschaften, Berlin.
[4] Ibragimov, I. A. and Khasminskii, R. Z. (1997), Some estimation problems in infinite dimensional Gaussian white noise, in, Festschrift for Lucien Le Cam. Research Papers in Probability and Statistics , Springer-Verlag, New York, pp. 275-296. · Zbl 0908.62083 · doi:10.1007/978-1-4612-1880-7_16
[5] Ingster, Yu. I. and Stepanova, N. (2009), Estimation and detection of functions from weighted tensor product spaces, Mathematical Methods of Statistics 18 , 310-340. · Zbl 1282.62119 · doi:10.3103/S1066530709040024
[6] Ingster, Yu. I. and Suslina I. A. (2003), Nonparametric Goodness-of-Fit Testing under Gaussian Models . Lecture Notes in Statistics, Vol. 169 , Springer-Verlag, New York. · Zbl 1013.62049
[7] Ingster, Yu. I. and Suslina I. A. (2005), On estimation and detection of smooth function of many variables, Mathematical Methods of Statistics 14 , 299-331. · Zbl 1088.62103
[8] Ingster, Yu. I. and Susulina I. A. (2006), On estimation and detection of functions of infinitely many variables, Journal of Mathematical Sciences 139 (3), 6548-6561.
[9] Ingster, Yu. I. and Suslina I. A. (2007), Estimation and detection of high-variable functions from Sloan-Woźniakowski space., Mathematical Methods of Statistics 16 , 318-353. · Zbl 1229.62074 · doi:10.3103/S1066530707040035
[10] Ingster, Yu. I. and Suslina I. A. (2007), On estimation and detection of a function from tensor product spaces (in Russian)., Zapiski Nauchnyh Seminarov POMI 351 , 180-218. (English translation in Journal of Mathematical Sciences (2008) 152 , 897-920.)
[11] Ingster, Yu. I. and Suslina I. A. (2009), Adaptive detection of a high-variable function (in Russian)., Zapiski Nauchnyh Seminarov POMI , 368 , 156-170. (English translation in Journal of Mathematical Sciences (2010) 167 , 522-530.)
[12] Kerkyacharian, G., Lepski, O., and Picard, D. (2001), Nonliner estimation in anisotropic multi-index denoising, Probability Theory and Related Fields 121 , 137-170. · Zbl 1010.62029 · doi:10.1007/s004400100148
[13] Kerkyacharian, G., Lepski, O., and Picard, D. (2008), Nonliner estimation in anisotropic multi-index denoising. Sparse case, Theory of Probability and Its Applications 52 (1), 58-77. · Zbl 1315.62031 · doi:10.4213/tvp9
[14] Nikolskii, S. M. (1969), Approximation of Functions of Several Variables and Imbedding Theorems (in Russian), 1st ed., Nauka, Moscow. (Elglish translation: Springer-Verlag, Berlin, 1975.) · Zbl 0185.37901
[15] Nussbaum, M. (1983), Optimal filtering of a function of many variables in Gaussian white noise, Problems of Information Transmission 19 (2), 105-111. · Zbl 0525.94002
[16] Pinsker, M. S. (1980), Optimal filtration of square-integrable signals in Gaussian noise, Problems of Information Transmission 16 , 120-133. · Zbl 0452.94003
[17] Skorohod, A. V. (1974), Integration in Hilbert Spaces , Springer-Verlag, Berlin-New York.
[18] Tsybakov, A. B. (2009), Introduction to Nonparametric Estimation , Springer Science+Business Media, New York. · Zbl 1176.62032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.