×

zbMATH — the first resource for mathematics

An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. (English) Zbl 1274.62360
Summary: Continuously indexed Gaussian fields (GFs) are the most important ingredient in spatial statistical modelling and geostatistics. The specification through the covariance function gives an intuitive interpretation of the field properties. On the computational side, GFs are hampered with the big n problem, since the cost of factorizing dense matrices is cubic in the dimension. Although computational power today is at an all time high, this fact seems still to be a computational bottleneck in many applications. Along with GFs, there is the class of Gaussian Markov random fields (GMRFs) which are discretely indexed. The Markov property makes the precision matrix involved sparse, which enables the use of numerical algorithms for sparse matrices, that for fields in \(\mathbb R^2\) only use the square root of the time required by general algorithms. The specification of a GMRF is through its full conditional distributions but its marginal properties are not transparent in such a parameterization. We show that, using an approximate stochastic weak solution to (linear) stochastic partial differential equations, we can, for some GFs in the Matérn class, provide an explicit link, for any triangulation of \(\mathbb R^d\), between GFs and GMRFs, formulated as a basis function representation. The consequence is that we can take the best from the two worlds and do the modelling using GFs but do the computations by using GMRFs. Perhaps more importantly, our approach generalizes to other covariance functions generated by SPDEs, including oscillating and non-stationary GFs, as well as GFs on manifolds. We illustrate our approach by analysing global temperature data with a non-stationary model defined on a sphere.

MSC:
62H11 Directional data; spatial statistics
62M40 Random fields; image analysis
62H30 Classification and discrimination; cluster analysis (statistical aspects)
86A32 Geostatistics
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adler, The Geometry of Random Fields (2010) · Zbl 1182.60017
[2] Adler, Random Fields and Geometry (2007)
[3] Allcroft, A latent Gaussian Markov random-field model for spatiotemporal rainfall disaggregation, Appl. Statist. 52 pp 487– (2003) · Zbl 1111.62362
[4] Arjas, Bayesian inference of survival probabilities, under stochastic ordering constraints, J. Am. Statist. Ass. 91 pp 1101– (1996) · Zbl 0880.62024
[5] Auslander, Introduction to Differentiable Manifolds (1977)
[6] Banerjee, Hierarchical Modeling and Analysis for Spatial Data (2004) · Zbl 1053.62105
[7] Banerjee, Gaussian predictive process models for large spatial data sets, J. R. Statist. Soc. B 70 pp 825– (2008) · Zbl 05563371
[8] Bansal, Statistical analyses of brain surfaces using Gaussian random fields on 2-D manifolds, IEEE Trans. Med. Imgng 26 pp 46– (2007)
[9] Besag, Spatial interaction and the statistical analysis of lattice systems (with discussion), J. R. Statist. Soc. B 36 pp 192– (1974) · Zbl 0327.60067
[10] Besag, Statistical analysis of non-lattice data, Statistician 24 pp 179– (1975)
[11] Besag, On a system of two-dimensional recurrence equations, J. R. Statist. Soc. B 43 pp 302– (1981) · Zbl 0487.60045
[12] Besag, On conditional and intrinsic autoregressions, Biometrika 82 pp 733– (1995) · Zbl 0899.62123
[13] Besag, First-order intrinsic autoregressions and the de Wijs process, Biometrika 92 pp 909– (2005) · Zbl 1151.62068
[14] Besag, Bayesian image restoration with two applications in spatial statistics (with discussion), Ann. Inst. Statist. Math. 43 pp 1– (1991) · Zbl 0760.62029
[15] Bolin, Mathematical Sciences Preprint 2009:13. (2009)
[16] Bolin, Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping, Ann. Appl. Statist. 5 pp 523– (2011) · Zbl 1235.60075
[17] Brenner, The Mathematical Theory of Finite Element Methods (2007)
[18] Brohan, Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850, J. Geophys. Res. pp 111– (2006)
[19] Chen, The lumped mass finite element method for a parabolic problem, J. Aust. Math. Soc. B 26 pp 329– (1985) · Zbl 0576.65110
[20] Chilés, Geostatistics: Modeling Spatial Uncertainty (1999)
[21] Ciarlet, The Finite Element Method for Elliptic Problems (1978)
[22] Cressie, Statistics for Spatial Data (1993)
[23] Cressie, Classes of nonseparable, spatio-temporal stationary covariance functions, J. Am. Statist. Ass. 94 pp 1330– (1999) · Zbl 0999.62073
[24] Cressie, Fixed rank kriging for very large spatial data sets, J. R. Statist. Soc. B 70 pp 209– (2008) · Zbl 05563351
[25] Cressie, Conditional-mean least-squares fitting of Gaussian Markov random fields to Gaussian fields, Computnl Statist. Data Anal. 52 pp 2794– (2008) · Zbl 1452.62707
[26] Dahlhaus, Edge effects and efficient parameter estimation for stationary random fields, Biometrika 74 pp 877– (1987) · Zbl 0633.62094
[27] Das , B. 2000 Global covariance modeling: a deformation approach to anisotropy PhD Thesis Department of Statistics, University of Washington
[28] Davis, Direct Methods for Sparse Linear Systems (2006) · Zbl 1119.65021
[29] Diggle, Model-based Geostatistics (2006)
[30] Duff, Direct Methods for Sparse Matrices (1989)
[31] Edelsbrunner, Geometry and Topology for Mesh Generation (2001)
[32] Eidsvik, Technical Report 9 (2010)
[33] Federer, Hausdorff measure and Lebesgue area, Proc. Natn. Acad. Sci. USA 37 pp 90– (1951) · Zbl 0042.28402
[34] Federer, Colloquium lectures on geometric measure theory, Bull. Am. Math. Soc. 84 pp 291– (1978) · Zbl 0392.49021
[35] Fuentes, High frequency kriging for nonstationary environmental processes, Environmetrics 12 pp 469– (2001)
[36] Fuentes, Approximate likelihood for large irregular spaced spatial data, J. Am. Statist. Ass. 102 pp 321– (2008) · Zbl 1284.62589
[37] Furrer, Covariance tapering for interpolation of large spatial datasets, J. Computnl Graph. Statist. 15 pp 502– (2006)
[38] George, Computer Solution of Large Sparse Positive Definite Systems (1981) · Zbl 0516.65010
[39] Gneiting, Simple tests for the validity of correlation function models on the circle, Statist. Probab. Lett. 39 pp 119– (1998) · Zbl 0910.60022
[40] Gneiting, Nonseparable, stationary covariance functions for space-time data, J. Am. Statist. Ass. 97 pp 590– (2002) · Zbl 1073.62593
[41] Gneiting, Matérn cross-covariance functions for multivariate random fields, J. Am. Statist. Ass. 105 pp 1167– (2010) · Zbl 1390.62194
[42] Gschlößl, Modelling count data with overdispersion and spatial effects, Statist. Pap. 49 pp 531– (2007) · Zbl 1310.62083
[43] Guttorp, Studies in the history of probability and statistics XLIX: on the Matérn correlation family, Biometrika 93 pp 989– (2006) · Zbl 1436.62013
[44] Guyon, Parameter estimation for a stationary process on a d-dimensional lattice, Biometrika 69 pp 95– (1982) · Zbl 0485.62107
[45] Hansen, GISS analysis of surface temperature change, J. Geophys. Res. 104 pp 30997– (1999)
[46] Hansen, A closer look at United States and global surface temperature change, J. Geophys. Res. 106 pp 23947– (2001)
[47] Hartman, Fast kriging of large data sets with Gaussian Markov random fields, Computnl Statist. Data Anal. 52 pp 2331– (2008) · Zbl 1452.62708
[48] Heine, Models for two-dimensional stationary stochastic processes, Biometrika 42 pp 170– (1955) · Zbl 0067.36504
[49] Henderson, Modelling spatial variation in leukemia survival data, J. Am. Statist. Ass. 97 pp 965– (2002) · Zbl 1048.62102
[50] Higdon, A process-convolution approach to modelling temperatures in the North Atlantic Ocean, Environ. Ecol. Statist. 5 pp 173– (1998)
[51] Higdon, Bayesian Statistics 6 pp 761– (1999) · Zbl 0951.62091
[52] Hjelle, Triangulations and Applications (2006)
[53] Hrafnkelsson, Hierarchical modeling of count data with application to nuclear fall-out, Environ. Ecol. Statist. 10 pp 179– (2003)
[54] Hughes-Oliver, Parametric nonstationary correlation models, Statist. Probab. Lett. 40 pp 267– (1998) · Zbl 0959.62123
[55] Ilić, A numerical solution using an adaptively preconditioned Lanczos method for a class of linear systems related with the fractional Poisson equation, J. Appl. Math. Stoch. Anal. pp 104525– (2008) · Zbl 1162.65015
[56] Jones, Stochastic processes on a sphere, Ann. Math. Statist. 34 pp 213– (1963) · Zbl 0202.46702
[57] Jun, Nonstationary covariance models for global data, Ann. Appl. Statist. 2 pp 1271– (2008) · Zbl 1168.62381
[58] Karypis, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Scient. Comput. 20 pp 359– (1999) · Zbl 0915.68129
[59] Kneib, A mixed model approach for geoadditive hazard regression, Scand. J. Statist. 34 pp 207– (2007) · Zbl 1142.62073
[60] Krantz, Geometric Integration Theory (2008) · Zbl 1149.28001
[61] Lindgren, A note on the second order random walk model for irregular locations, Scand. J. Statist. 35 pp 691– (2008) · Zbl 1199.60276
[62] McCullagh, Generalized Linear Models (1989) · Zbl 0588.62104
[63] Paciorek, Spatial modelling using a new class of nonstationary covariance functions, Environmetrics 17 pp 483– (2006)
[64] Peterson, An overview of the Global Historical Climatology Network temperature database, Bull. Am. Meteorol. Soc. 78 pp 2837– (1997)
[65] Pettitt, A conditional autoregressive Gaussian process for irregularly spaced multivariate data with application to modelling large sets of binary data, Statist. Comput. 12 pp 353– (2002)
[66] Quarteroni, Numerical Approximation of Partial Differential Equations (2008)
[67] Rozanov, Markov Random Fields (1982)
[68] Rue, Fast sampling of Gaussian Markov random fields, J. R. Statist. Soc. B 63 pp 325– (2001) · Zbl 0979.62075
[69] Rue, Gaussian Markov Random Fields: Theory and Applications (2005)
[70] Rue, Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion), J. R. Statist. Soc. B 71 pp 319– (2009) · Zbl 1248.62156
[71] Rue, Fitting Gaussian Markov random fields to Gaussian fields, Scand. J. Statist. 29 pp 31– (2002) · Zbl 1017.62088
[72] Samko, Fractional Integrals and Derivatives: Theory and Applications (1992)
[73] Sampson, Nonparametric estimation of nonstationary spatial covariance structure, J. Am. Statist. Ass. 87 pp 108– (1992)
[74] Smith, Change of variables in Laplace’s and other second-order differential equations, Proc. Phys. Soc. 46 pp 344– (1934) · Zbl 0009.11003
[75] Song, A compariative study of Gaussian geostatistical models and Gaussian Markov random field models, J. Multiv. Anal. 99 pp 1681– (2008) · Zbl 1142.86309
[76] Stein, Space-time covariance functions, J. Am. Statist. Ass. 100 pp 310– (2005) · Zbl 1117.62431
[77] Stein, Interpolation of Spatial Data: Some Theory for Kriging (1999) · Zbl 0924.62100
[78] Stein, Approximating likelihoods for large spatial data sets, J. R. Statist. Soc. B 66 pp 275– (2004) · Zbl 1062.62094
[79] Vecchia, Estimation and model identification for continuous spatial processes, J. R. Statist. Soc. B 50 pp 297– (1988)
[80] Wahba, Spline interpolation and smoothing on the sphere, SIAM J. Scient. Statist. Comput. 2 pp 5– (1981) · Zbl 0537.65008
[81] Wall, A close look at the spatial structure implied by the CAR and SAR models, J. Statist. Planng Inf. 121 pp 311– (2004) · Zbl 1036.62097
[82] Weir, Binary probability maps using a hidden conditional autoregressive Gaussian process with an application to Finnish common toad data, Appl. Statist. 49 pp 473– (2000) · Zbl 0965.62099
[83] Whittle, On stationary processes in the plane, Biometrika 41 pp 434– (1954) · Zbl 0058.35601
[84] Whittle, Stochastic processes in several dimensions, Bull. Inst. Int. Statist. 40 pp 974– (1963) · Zbl 0129.10603
[85] Yue, Nonstationary spatial Gaussian Markov random fields, J. Computnl Graph. Statist. 19 pp 96– (2010)
[86] Åberg, A class of non-Gaussian second order random fields, Extremes pp 1– (2010)
[87] Åberg, Fatigue damage assessment for a spectral model of non-Gaussian random loads, Probab. Engng Mech. 24 pp 608– (2009)
[88] Handbook of Mathematical Functions (1965)
[89] Ainsworth, Pure and Applied Mathematics (2000)
[90] Anderes, Local likelihood estimation for nonstationary random fields, J. Multiv. Anal. 102 pp 505– (2011) · Zbl 1207.62177
[91] Balgovind, A stochastic-dynamic model for the spatial structure of forecast error statistics, Mnthly Weath. Rev. 111 pp 701– (1983)
[92] Banerjee, Gaussian predictive process models for large spatial data sets, J. R. Statist. Soc. B 70 pp 825– · Zbl 05563371
[93] Barndorff-Nielsen, Infinite divisibility of the hyperbolic and generalized inverse gaussian distributions, Probab. Theor. Reltd Flds 38 pp 309– (1977) · Zbl 0403.60026
[94] Berg, The Dagum family of isotropic correlation functions, Bernoulli 14 pp 1134– (2008) · Zbl 1158.60350
[95] Berger, Objective Bayesian analysis of spatially correlated data, J. Am. Statist. Ass. 96 pp 1361– (2001) · Zbl 1051.62095
[96] Bermúdez, Perfectly Matched Layers for time-harmonic second order elliptic problems, Arch. Computnl Meth. Engng 17 pp 77– (2010) · Zbl 1359.76217
[97] Besag, Spatial interaction and the statistical analysis of lattice systems (with discussion), J. R. Statist. Soc. B 36 pp 192– · Zbl 0327.60067
[98] Besag, On a system of two-dimentional recurrence equations, J. R. Statist. Soc. B 43 pp 302– (1981) · Zbl 0487.60045
[99] Besag, First-order intrinsic autoregressions and the de Wijs process, Biometrika 92 pp 909– · Zbl 1151.62068
[100] Bhattacharya, The Hurst effect under trends, J. Appl. Probab. 20 pp 649– (1983) · Zbl 0526.60027
[101] Bolin, Computationally efficient methods in spatial statistics, applications in environmental modeling, Licentiate Thesis (2009)
[102] Bolin , D. Lindgren , F. Wavelet Markov models as efficient alternatives to tapering and convolution fields Mathematical Sciences Preprint 2009:13 Lund University
[103] Bolin , D. Lindgren , F. 2011a Spatial wavelet Markov models are more efficient than covariance tapering and process convolutions
[104] Bolin, Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping, Ann. Appl. Statist. 5 pp 523– (2011b) · Zbl 1235.60075
[105] Bookstein, Principal warps: thin-plate splines and the decomposition of deformations, IEEE Trans. Pattn Anal. Mach. Intell. 11 pp 567– (1989) · Zbl 0691.65002
[106] Cameletti, Comparing air quality statistical models, Working Paper (2011)
[107] Carr, Stochastic volatility for Lévy processess, Math. Finan. 13 pp 345– (2003) · Zbl 1092.91022
[108] Challenor, The Oxford Handbook of Applied Bayesian Analysis pp 403– (2010)
[109] Christensen, Deformable templates using large deformation kinematics, IEEE Trans. Im. Process. 5 pp 1435– (1996)
[110] Clark, A subordinated stochastic process model with finite variance, Econometrica 41 pp 135– (1973) · Zbl 0308.90011
[111] Coifman, Diffusion wavelets, Appl. Computnl Harm. Anal. 21 pp 53– (2006) · Zbl 1095.94007
[112] Conti, Bayesian emulation of complex multi-output and dynamic computer models, J. Statist. Planng Inf. 140 pp 640– (2010) · Zbl 1177.62033
[113] Crainiceanu, Bivariate binomial spatial modeling of loa loa prevalence in tropical Africa, J. Am. Statist. Ass. 103 pp 21– (2008) · Zbl 1469.86015
[114] Cressie, Fixed rank kriging for very large spatial data sets, J. R. Statist. Soc. B 70 pp 209– · Zbl 05563351
[115] Cressie, Statistics for Spatio-temporal Data (2011)
[116] Das, PhD Dissertation (2000)
[117] Diggle, Geostatistical inference under preferential sampling (with discussion), Appl. Statist. 59 pp 191– (2010)
[118] Diggle, Model-based geostatistics (with discussion), Appl. Statist. 47 pp 299– (1998) · Zbl 0904.62119
[119] Eidsvik, Technical Report 9 (2010)
[120] Eliazar, Spatial gliding, temporal trapping, and anomalous transport, Physica 187 pp 30– (2004) · Zbl 1054.82026
[121] Eliazar, Lévy Ornstein-Uhlenbeck, and subordination: spectral vs. jump description, J. Statist. Phys. 119 pp 165– (2005) · Zbl 1125.82026
[122] Fotopoulos, Exact asymptotic distribution of change-point mle for changes in the mean of Gaussian sequences, Ann. Appl. Statist. 4 pp 1081– (2010) · Zbl 1194.62016
[123] Furrer, Technical Note NCAR/TN476+STR (2008)
[124] Furrer, A framework to understand the asymptotic properties of Kriging and splines, J. Kor. Statist. Soc. 36 pp 57– (2007) · Zbl 1115.62321
[125] Furrer , E. M. Nychka , D. W. Piret , G. Furrer , R. 2011 An asymptotic framework under the Matérn covariance model
[126] Gelfand, Handbook of Spatial Statistics pp 495– (2010)
[127] Giraldo, Ordinary kriging for function-valued spatial data, Environ. Ecol. Statist. (2011)
[128] Givoli, Recent advances in the DtN FE method, Arch. Computnl Meth. Engng 6 pp 71– (1999)
[129] Gneiting, Nonseparable, stationary covariance functions for space-time data, J. Am. Statist. Ass. 97 pp 590– (2002a) · Zbl 1073.62593
[130] Gneiting, Compactly supported correlation functions, J. Multiv. Anal. 83 pp 493– (2002b) · Zbl 1011.60015
[131] Gneiting, Matérn cross-covariance functions for multivariate random fields, J. Am. Statist. Ass. 105 pp 1167–
[132] Gneiting, Stochastic models that separate fractal dimension and the Hurst effect, SIAM Rev. 46 pp 269– (2004) · Zbl 1062.60053
[133] Godwin, PhD Dissertation (2000)
[134] Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82 pp 711– (1995) · Zbl 0861.62023
[135] Griebel, A finite method for density estimation with Gaussian process priors, SIAM J. Numer. Anal. 47 pp 4759– (2010) · Zbl 1211.65007
[136] Gumprecht, Designs for detecting spatial dependence, Geograph. Anal. 41 pp 127– (2009)
[137] Guttorp, Studies in the history of probability and statistics XLIX: On the Matérn correlation family, Biometrika 93 pp 989– (2006) · Zbl 1436.62013
[138] Hegland, Approximate maximum a posteriori with Gaussian process priors, Constr. Approximn 26 pp 205– (2007) · Zbl 1127.65039
[139] Hesthaven, Nodal Discontinuous Galerkin Methods (2008) · Zbl 1134.65068
[140] Higdon, A process-convolution approach to modelling temperatures in the North Atlantic Ocean, Environ. Ecol. Statist. 5 pp 173–
[141] Higdon, Bayesian Statistics 6 pp 761– (1999) · Zbl 0951.62091
[142] Höhle, Additive-multiplicative regression models for spatio-temporal epidemics, Biometr. J. 51 pp 961– (2009)
[143] Hooten, A Hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the Eurasian Collared-Dove, Environ. Ecol. Statist. 15 pp 59– (2007)
[144] Illian, Gibbs point processes with mixed effects, Environmetrics 21 pp 341– (2010)
[145] Illian, Technical Report (2010)
[146] Illian , J. B. Sørbye , S. H. Rue , H. Hendrichsen , D. K. 2011 Fitting a log gaussian cox process with temporally varying effects-a case study
[147] Irvine, Spatial designs and properties of spatial correlation: effects on covariance estimation, J. Agric. Biol. Environ. Statist. 12 pp 450– (2007) · Zbl 1306.62296
[148] Jandhyala, Estimation of an unknown change-point occurring in the mean and covariance matrix of a multivariate Gaussian process with application to annual mean radiosonde temperature deviations at south and north polar zones, J. Clim (2011)
[149] Jun, An approach to producing spacetime covariance functions on spheres, Technometrics 49 pp 468– (2007)
[150] Jun, Nonstationary covariance models for global data, Ann. Appl. Statist. 2 pp 1271– · Zbl 1168.62381
[151] Keller, Exact nonreflecting boundary conditions, J. Computnl Phys. 82 pp 172– (1989) · Zbl 0671.65094
[152] Kennedy, Bayesian calibration of computer models (with discussion), J. R. Statist. Soc. B 63 pp 425– (2001) · Zbl 1007.62021
[153] Kent, Probability, Statistics and Optimisation pp 325– (1994)
[154] Kongsgård , H. W. 2011 The genetics of conflict: low level interaction between conflict events http://ssrn.com/abstract=1768198
[155] Kumar, Fractional normal inverse Gaussian diffusion, Statist. Probab. Lett. 81 pp 146– (2011) · Zbl 1210.60040
[156] Le, Statistical Analysis of Environmental Space-time Processes (2006) · Zbl 1102.62126
[157] LeVeque, Finite Volume Methods for Hyperbolic Problems (2002) · Zbl 1010.65040
[158] Li, The value of multi-proxy reconstruction of past climate (with discussions and rejoinder), J. Am. Statist. Ass. 105 pp 883– (2010) · Zbl 1390.62190
[159] Lindgren, Non-traditional stochastic models for ocean wave-Lagrange models and nested SPDE models, Eur. Phys. J. Specl Top. 185 pp 209– (2010)
[160] Loeppky, Choosing the sample size of a computer experiment: a practical guide, Technometrics 51 pp 366– (2009)
[161] Majumdar, Spatio-temporal change-point modeling, J. Statist. Planng Inf. 130 pp 149– (2005) · Zbl 1085.62103
[162] Mardia, Proc. Conf. Geomathematics and GIS Analysis of Resources, Environment and Hazards, Beijing pp 4– (2007)
[163] Mardia, Maximum likelihood estimation using composite likelihoods for closed exponential families, Biometrika 96 pp 975– (2010) · Zbl 1178.62059
[164] Martin, Exact Gaussian maximum likelihood and simulation for regularly-spaced observations with Gaussian correlations, Biometrika 87 pp 727– (2000) · Zbl 0956.62084
[165] Martin, Approximations to the covariance properties of processes averaged over irregular spatial regions, Communs Statist. Theor. Meth. 23 pp 913– (1994) · Zbl 0825.62111
[166] Mateu, On a class of non-stationary, compactly supported spatial covariance functions, Stochast. Environ. Res. Risk Assessmnt (2011)
[167] Møller, Log Gaussian Cox processes, Scand. J. Statist. 25 pp 451– (1998) · Zbl 0931.60038
[168] Møller, Statistical Inference and Simulation for Spatial Point Processes (2004) · Zbl 1044.62101
[169] Møller, Modern statistics for spatial point processes (with discussion), Scand. J. Statist. 34 pp 643– (2007) · Zbl 1157.62067
[170] Montegranario, A regularization approach for surface reconstruction from point clouds, Appl. Math. Computn 188 pp 583– (2007) · Zbl 1114.65306
[171] Müller, Compound optimal spatial designs, Environmetrics 21 pp 354– (2010)
[172] Narcowich, Generalized Hermite interpolation and positive definite kernels on a Riemannian manifold, J. Math. Anal. Applic. 190 pp 165– (1995) · Zbl 0859.58032
[173] North, Correlation models for temperature fields, J. Clim (2011)
[174] Nychka, Splines as local smoothers, Ann. Statist. 23 pp 1175– (1995) · Zbl 0842.62025
[175] Obukhov, Statistically homogenous random fields on the globe, Usp. Mat. Nauk. 2 pp 196– (1947)
[176] Pardo-lgúzquiza, AMLE3D: a computer program for the statistical inference of covariance parameters by approximate maximum likelihood estimation, Comput. Geosci. 7 pp 793– (1997)
[177] Pardo-lgúzquiza, MLMATERN: a computer program for maximum likelihood inference with the spatial Matern covariance model, Comput. Geosci. 35 pp 1139– (2008)
[178] Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields (1996) · Zbl 0841.60024
[179] Ramsay, Spline smoothing over difficult regions, J. R. Statist. Soc. B 64 pp 307– (2002) · Zbl 1067.62037
[180] Roberts, Exponential convergence of Langevin diffusions and their discrete approximations, Bernoulli 2 pp 341– (1996) · Zbl 0870.60027
[181] Rosanov, Markov random fields and stochastic partial differential equations, Math. USSR Sbor 32 pp 515– (1977) · Zbl 0396.60057
[182] Rue, Gaussian Markov Random Fields: Theory and Applications (2005)
[183] Rue, Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion), J. R. Statist. Soc. B 71 pp 319– · Zbl 1248.62156
[184] Ruiz-Medina, The Dagum and auxiliary covariance families: towards reconciling two-parameter models that separate fractal dimension and the Hurst effect, Probab. Engng Mech. 26 pp 259– (2011)
[185] Sampson, Handbook of Spatial Statistics pp 119– (2010)
[186] Sampson, Nonparametric estimation of nonstationary spatial covariance structure, J. Am. Statist. Ass. 87 pp 108–
[187] Santner, The Design and Analysis of Computer Experiments (2003) · Zbl 1041.62068
[188] Schmidt, Considering covariates in the covariance structure of spatial processes, Environmetrics 22 pp 487– (2011)
[189] Schmidt, Bayesian inference for non-stationary spatial covariance structures via spatial deformations, J. R. Statist. Soc. B 65 pp 743– (2003) · Zbl 1063.62034
[190] Simpson, Preprint Statistics 16/2010 (2010)
[191] Sokolov, Lévy flights from a continuous-time process, Phys. Rev. E 63 pp 011104– (2000)
[192] Stein , M. L. Interpolation of Spatial Data: Some Theory for Kriging Springer · Zbl 0924.62100
[193] Stein, Technical Report 21 (2005)
[194] Sun, Advances and Challenges in Space-time Modelling of Natural Events (2011)
[195] Vapnik, Statistical Learning Theory (1998)
[196] Vecchia, Estimation and model identificaton for continuous spatial process, J. R. Statist. Soc. B 50 pp 297– (1988)
[197] Wegener, Doctoral Thesis (2010)
[198] Wendland, Scattered Data Approximation (2005)
[199] Whittle, On stationary processes in the plane, Biometrika 41 pp 434– · Zbl 0058.35601
[200] Wikle, Hierarchical Bayesian models for predicting the spread of ecological processes, Ecology 84 pp 1382– (2003)
[201] Wikle, Polynomial nonlinear spatio-temporal integro-difference equation models, J. Time Ser. Anal. (2011) · Zbl 1294.62225
[202] Wikle, Applications of Computational Statistics in the Environmental Sciences: Hierarchical Bayes and MCMC Methods pp 145– (2006)
[203] Wikle, A general science-based framework for nonlinear spatiotemporal dynamical models, Test 19 pp 417– (2010) · Zbl 1203.37141
[204] Wikle, Spatiotemporal hierarchical Bayesian modeling: tropical ocean surface winds, J. Am. Statist. Ass. 96 pp 382– (2001) · Zbl 1022.62117
[205] Wiktorsson, Simulation of stochastic integrals with respect to Lévy processes of type G, Stoch. Processes Appl. 101 pp 113– (2002) · Zbl 1075.60051
[206] Wood, Soap film smoohing, J. R. Statist. Soc. B 70 pp 931– (2008)
[207] Wu, Closed-form valuations of basket options using a multivariate normal inverse Gaussian model, Insur. Math. Econ. 44 pp 95– (2009) · Zbl 1156.91389
[208] Yadrenko, Spectral Theory of Random Fields (1983) · Zbl 0539.60048
[209] Zhang, Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics, J. Am. Statist. Ass. 99 pp 250– (2004) · Zbl 1089.62538
[210] Zhu, Spatial sampling design for prediction with estimated parameters, J. Agric. Biol. Environ. Statist. 11 pp 24– (2006)
[211] Zimmerman, Optimal network design for spatial prediction, covariance parameter estimation, and empirical prediction, Environmetrics 17 pp 635– (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.