×

Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes. (English) Zbl 1274.65251

The article is concerned with the derivation of error estimates for a finite volume scheme applied to the nonstationary heat equation with homogeneous boundary conditions. The space-time discretization employs the discrete gradient construction from the so-called SUSHI scheme of R. Eymard et al. [IMA J. Numer. Anal. 30, 1009–1043 (2010; Zbl 1202.65144)], originally applied to stationary elliptic problems. Such a scheme can be applied and analyzed on very general nonconforming meshes with star-shaped polyhedral elements. Error estimates in the \(L^{\infty }(H^1_0)\) and \(W^{1,\infty }(L^2)\) norms are derived. The proof uses estimates of the discrete gradient and properties of the involved discrete spaces from [loc. cit.]. Moreover, a suitable auxiliary problem is introduced, for which error estimates are known, and the final results of the paper are derived by comparison of the auxiliary problem and the considered finite volume scheme. The error estimates are derived under rather strong regularity assumptions on the exact solution.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1202.65144
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] A. Bradji, J. Fuhrmann: Error estimates of the discretization of linear parabolic equations on general nonconforming spatial grids. C. R. Math. Acad. Sci. Paris 348 (2010), 1119–1122. · Zbl 1201.65167
[2] A. Bradji, J. Fuhrmann: Some error estimates for the discretization of parabolic equations on general multidimensional nonconforming spatial meshes. NMA 2010, LNCS 6046 (2011) (I. Domov, S. Dimova, N. Kolkovska, eds.). Springer, Berlin, 2011, pp. 269–276.
[3] A. Bradji: Some simple error estimates for finite volume approximation of parabolic equations. C. R. Math. Acad. Sci. Paris 346 (2008), 571–574. · Zbl 1142.65075
[4] A. Bradji, J. Fuhrmann: Some error estimates in finite volume method for parabolic equations. Finite Volumes for Complex Applications V. Proc. 5th Int. Symp. (R. Eymard, J.-M. Hérard, eds.). John Wiley & Sons, 2008, pp. 233–240.
[5] A. Bradji, R. Herbin: Discretization of coupled heat and electrical diffusion problems by finite-element and finite-volume methods. IMA J. Numer. Anal. 28 (2008), 469–495. · Zbl 1144.78024
[6] H. Brézis: Analyse Fonctionnelle: Théorie et Applications. Mason, Paris, 1994. (In French.)
[7] P. Chatzipantelidis, R.D. Lazarov, V. Thomée: Parabolic finite volume element equations in nonconvex polygonal domains. Numer. Methods Partial Differ. Equ. 25 (2009), 507–525. · Zbl 1168.65051
[8] P. Chatzipantelidis, R.D. Lazarov, V. Thomée: Error estimates for a finite volume element method for parabolic equations on convex polygonal domain. Numer. Methods Partial Differ. Equ. 20 (2004), 650–674. · Zbl 1067.65092
[9] P.G. Ciarlet: Basic error estimates for elliptic problems. Handbook of Numerical Analysis, Vol. II (P.G. Ciarlet, J.-L. Lions, eds.). North-Holland, Amsterdam, 1991, pp. 17–352.
[10] V. Dolejší, M. Feistauer, V. Kučera, V. Sobotíková: An optimal L L 2)-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection-diffusion problem. IMA J. Numer. Anal. 28 (2008), 496–521. · Zbl 1158.65067
[11] L.C. Evans: Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19. Am. Math. Soc., Providence, 1998.
[12] R. Eymard, T. Galloüet, R. Herbin: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010), 1009–1043. · Zbl 1202.65144
[13] R. Eymard, T. Galloüet, R. Herbin: Cell centered discretization of non linear elliptic problems on general multidimensional polyhedral grids. J. Numer. Math. 17 (2009), 173–193. · Zbl 1179.65138
[14] R. Eymard, T. Galloüet, R. Herbin: A new finite volume scheme for anisotropic diffusion problems on general grids: Convergence analysis. C. R. Math. Acad. Sci. Paris 344 (2007), 403–406. · Zbl 1112.65120
[15] R. Eymard, T. Galloüet, R. Herbin: A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal. 26 (2006), 326–353. · Zbl 1093.65110
[16] R. Eymard, T. Galloüet, R. Herbin: Finite Volume Methods. Handbook of Numerical Analysis, Vol. VII (P.G. Ciarlet, J.-L. Lions, eds.). North-Holland/Elsevier, Amsterdam, 2000, pp. 713–1020.
[17] M. Feistauer, J. Felcman, I. Straškraba: Mathematical and Computational Methods for Compressible Flow. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, 2003. · Zbl 1028.76001
[18] T. Galloüet, R. Herbin, M.H. Vignal: Error estimates for the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37 (2000), 1935–1972. · Zbl 0986.65099
[19] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems, 2nd edition. Springer, Berlin, 2006. · Zbl 1105.65102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.