zbMATH — the first resource for mathematics

On noncooperative nonlinear differential games. (English) Zbl 1274.91073
Summary: Noncooperative games with systems governed by nonlinear differential equations remain, in general, nonconvex even if continuously extended (i.e., relaxed) in terms of Young measures. However, if the individual payoff functionals are “enough” uniformly convex and the controlled system is only “slightly” nonlinear, then the relaxed game enjoys a globally convex structure, which guarantees existence of its Nash equilibria as well as existence of approximate Nash equilibria (in a suitable sense) for the original game.

91A23 Differential games (aspects of game theory)
91A10 Noncooperative games
Full Text: Link
[1] Balder E. J.: On a useful compactification for optimal control problems. J. Math. Anal. Appl. 72 (1979), 391-398 · Zbl 0434.49007 · doi:10.1016/0022-247X(79)90235-X
[2] Balder E. J.: A general denseness result for relaxed control theory. Bull. Austral. Math. Soc. 30 (1984), 463-475 · Zbl 0544.49008 · doi:10.1017/S0004972700002185
[3] Balder E. J.: Generalized equilibrium results for games with incomplete information. Math. Oper Res. 13 (1988), 265-276 · Zbl 0658.90104 · doi:10.1287/moor.13.2.265
[4] Bensoussan A.: Points de Nash dans le cas de fonctionnelles quadratiques et jeux differentiels lineaires a \(n\) personnes. SIAM J. Control 12 (1974), 460-499 · Zbl 0254.90066 · doi:10.1137/0312037
[5] Gabasov R., Kirillova F.: Qualitative Theory of Optimal Processes. Nauka, Moscow 1971 · Zbl 0339.49002
[6] Kindler J.: Equilibrium point theorems for two-person games. SIAM J. Control Optim. 22 (1984), 671-683 · Zbl 0545.90102 · doi:10.1137/0322042
[7] Krasovskiĭ N. N., Subbotin A. I.: Game Theoretical Control Problems. Springer, Berlin 1988 · Zbl 0649.90101
[8] Lenhart S., Protopopescu V., Stojanovic S.: A minimax problem for semilinear nonlocal competitive systems. Appl. Math. Optim. 28 (1993), 113-132 · Zbl 0789.49009 · doi:10.1007/BF01182976
[9] Nash J.: Non-cooperative games. Ann. of Math. 54 (1951), 286-295 · Zbl 0045.08202 · doi:10.2307/1969529
[10] Nikaidô H., Isoda K.: Note on non-cooperative equilibria. Pacific J. Math. 5 (1955), 807-815 · Zbl 0171.40903 · doi:10.2140/pjm.1955.5.807
[11] Nikol’skiĭ M. S.: On a minimax control problem. Optimal Control and Differential Games (L. S. Pontryagin, Proc. Steklov Inst. Math. 1990, pp. 209-214 · Zbl 0709.49012
[12] Nowak A. S.: Correlated relaxed equilibria in nonzero-sum linear differential games. J. Math. Anal. Appl. 163 (1992), 104-112 · Zbl 0778.90102 · doi:10.1016/0022-247X(92)90281-H
[13] Patrone F.: Well-posedness for Nash equilibria and related topics. Recent Developments in Well-Posed Variational Problems (R. Lucchetti and J. Revalski, Kluwer, 1995, pp. 211-227 · Zbl 0849.90131
[14] Roubíček T.: Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin 1997 · Zbl 0880.49002
[15] Roubíček T.: Noncooperative games with elliptic systems. Proc. IFIP WG 7.2 Conf. Control of P.D.E., Chemnitz 1998, accepted · Zbl 0965.91006
[16] Sainte-Beuve M.-F.: Some topological properties of vector measures with bounded variations and its applications. Ann. Mat. Pura Appl. 116 (1978), 317-379 · Zbl 0379.46038 · doi:10.1007/BF02413878
[17] Schmidt W. H.: Maximum principles for processes governed by integral equations in Banach spaces as sufficient optimality conditions. Beiträge zur Analysis 17 (1981), 85-93 · Zbl 0478.49023
[18] Tan K. K., Yu J., Yuan X. Z.: Existence theorems of Nash equilibria for non-cooperative \(n\)-person games. Internat. J. Game Theory 24 (1995), 217-222 · Zbl 0837.90126 · doi:10.1007/BF01243152
[19] Tijs S. H.: Nash equilibria for noncooperative \(n\)-person game in normal form. SIAM Rev. 23 (1981), 225-237 · Zbl 0456.90091 · doi:10.1137/1023038
[20] Warga J.: Optimal Control of Differential and Functional Equations. Academic Press, New York 1972 · Zbl 0253.49001
[21] Young L. C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30 (1937), 212-234 · Zbl 0019.21901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.